首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   628篇
  免费   40篇
  国内免费   18篇
耳鼻咽喉   3篇
儿科学   5篇
妇产科学   5篇
基础医学   118篇
口腔科学   16篇
临床医学   45篇
内科学   211篇
皮肤病学   4篇
神经病学   45篇
特种医学   4篇
外科学   29篇
综合类   11篇
预防医学   30篇
眼科学   11篇
药学   77篇
中国医学   4篇
肿瘤学   68篇
  2024年   2篇
  2023年   19篇
  2022年   32篇
  2021年   48篇
  2020年   34篇
  2019年   22篇
  2018年   28篇
  2017年   31篇
  2016年   21篇
  2015年   33篇
  2014年   55篇
  2013年   73篇
  2012年   31篇
  2011年   50篇
  2010年   32篇
  2009年   27篇
  2008年   25篇
  2007年   20篇
  2006年   22篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1970年   1篇
排序方式: 共有686条查询结果,搜索用时 15 毫秒
101.
102.
103.
Tail-anchored (TA) membrane proteins are involved in a variety of important cellular functions, including membrane fusion, protein translocation, and apoptosis. The ATPase Get3 (Asna1, TRC40) was identified recently as the endoplasmic reticulum targeting factor of TA proteins. Get3 consists of an ATPase and α-helical subdomain enriched in methionine and glycine residues. We present structural and biochemical analyses of Get3 alone as well as in complex with a TA protein, ribosome-associated membrane protein 4 (Ramp4). The ATPase domains form an extensive dimer interface that encloses 2 nucleotides in a head-to-head orientation and a zinc ion. Amide proton exchange mass spectrometry shows that the α-helical subdomain of Get3 displays considerable flexibility in solution and maps the TA protein-binding site to the α-helical subdomain. The non-hydrolyzable ATP analogue AMPPNP-Mg2+- and ADP-Mg2+-bound crystal structures representing the pre- and posthydrolysis states are both in a closed form. In the absence of a TA protein cargo, ATP hydrolysis does not seem to be possible. Comparison with the ADP·AlF4-bound structure representing the transition state (Mateja A, et al. (2009) Nature 461:361–366) indicates how the presence of a TA protein is communicated to the ATP-binding site. In vitro membrane insertion studies show that recombinant Get3 inserts Ramp4 in a nucleotide- and receptor-dependent manner. Although ATP hydrolysis is not required for Ramp4 insertion per se, it seems to be required for efficient insertion. We postulate that ATP hydrolysis is needed to release Get3 from its receptor. Taken together, our results provide mechanistic insights into posttranslational targeting of TA membrane proteins by Get3.  相似文献   
104.
Defensins (e.g., human neutrophil peptides, or HNPs) contribute to innate immunity through diverse actions, including microbial killing; high concentrations are present in the lung in response to inflammation. Arginines are critical for HNP activity, which is decreased by their replacement with ornithine. ADP-ribosyltransferases (ARTs) catalyze transfer of ADP-ribose from NAD to an acceptor arginine in a protein substrate, whereas ADP-ribosylarginine hydrolases release ADP-ribose. ART1 on the surface of airway epithelial cells ADP-ribosylated HNP-1 specifically on arginines 14 and 24, with ADP-ribosylation altering biological activity. Di- and mono-ADP-ribosylated HNP-1 were isolated from bronchoalveolar lavage fluid (BALF) of patients with asthma and idiopathic pulmonary fibrosis (IPF), suggesting a role for ADP-ribosylation in disease. In the present study, we observed that ART1-catalyzed ADP-ribosylation of HNP-1 in vitro generated a product with ADP-ribose on arginine 24, and ornithine replacing arginine at position 14. We hypothesized that ADP-ribosylarginine is susceptible to a nonenzymatic hydrolytic reaction yielding ornithine. On incubation of di- or mono-ADP-ribosyl-HNP-1 at 37 °C, ADP-ribosylarginine was partially replaced by ornithine, whereas ornithine was not detected by amino acid analysis and mass spectrometry of unmodified HNP-1 incubated under the same conditions. Further, ornithine was produced from the model compound, ADP-ribosylarginine. BALF from an IPF patient contained ADP-ribosyl-HNP-ornithine as well as mono- and di-ADP-ribosylated HNP-1, consistent with in vivo conversion of arginine to ornithine. Targeted ADP-ribosylation of specific arginines by transferases, resulting in their replacement with ornithine, is an alternative pathway for regulation of protein function through posttranslational modification.  相似文献   
105.
α-Synuclein aggregation is thought to be a key event in the pathogenesis of synucleinopathies. Although different α-synuclein alterations and modifications have been proposed to be responsible for early aggregation steps, the mechanisms underlying these events remain unclarified. α-Synuclein is a small protein localized to synaptic terminals and its intrinsic structure has been claimed to be an important factor for self-oligomerization and self-aggregation. α-Synuclein expression studies in cell cultures have demonstrated that posttranslational modifications, such as phosphorylation, oxidation, and sumoylation, are primarily involved in α-synuclein aggregation. Furthermore, in the last few years accumulating evidence has pointed to alternative splicing as a crucial mechanism in the development of neurodegenerative disorders. At least three different α-synuclein isoforms have been described as products of alternative splicing. Two of these isoforms (α-synuclein 112 and α-synuclein 126) are shorter proteins with probably altered functions and aggregation propensity. The present review attempts to summarize the data so far available on α-synuclein structure, posttranslational modifications, and alternative splicing as possible enhancers of aggregation.  相似文献   
106.
Epigenetics is a rapidly growing field and holds great promise for a range of human diseases, including brain disorders such as Rett syndrome, anxiety and depressive disorders, schizophrenia, Alzheimer disease and Huntington disease. This review is concerned with the pharmacology of epigenetics to treat disorders of the epigenome whether induced developmentally or manifested/acquired later in life. In particular, we will focus on brain disorders and their treatment by drugs that modify the epigenome. While the use of DNA methyl transferase inhibitors and histone deacetylase inhibitors in in vitro and in vivo models have demonstrated improvements in disease-related deficits, clinical trials in humans have been less promising. We will address recent advances in our understanding of the complexity of the epigenome with its many molecular players, and discuss evidence for a compromised epigenome in the context of an ageing or diseased brain. We will also draw on examples of species differences that may exist between humans and model systems, emphasizing the need for more robust pre-clinical testing. Finally, we will discuss fundamental issues to be considered in study design when targeting the epigenome.  相似文献   
107.
108.
The increasing attention now paid to the elucidation of human proteome strengthened the development of analytical instruments able to provide reliable proteins and peptides quantitation and characterization in biological fluids and tissues. Emerging from proteomics, clinical proteomics exclusively considers its biomedical applications. It evaluates, often by high-throughput comparative platforms, the protein and peptide variations in body fluids, cells and tissues under different physiological and pathological conditions with the aim of discovering disease biomarkers. Among the available analytical methodologies, mass spectrometry in coupling with liquid chromatography or capillary electrophoresis demonstrated to be the eligible technique for protein detection and identification. This review summarizes the most recent applications of capillary electrophoresis–mass spectrometry to clinical proteomics, focusing on capillary zone electrophoresis separation mode and ESI and MALDI ionizations, which are the most frequently applied capillary electrophoresis–mass spectrometry hyphenated techniques.  相似文献   
109.
110.
Regulation of gene expression includes the replacement of canonical histones for non-allelic histone variants, as well as their multiple targeting by postranslational modifications. H2A variants are highly conserved between species suggesting they execute important functions that cannot be accomplished by canonical histones. Altered expression of many H2A variants is associated to cancer. MacroH2A variants are enriched in heterocromatic foci and are necessary for chromatin condensation. MacroH2A1.1 and macroH2A1.2 are two mutually exclusive isoforms. MacroH2A1.1 and macroH2A2 inhibit proliferation and are associated with better cancer prognosis; while macroH2A1.2 is associated to cancer progression. H2AX variant functions as a sensor of DNA damage and defines the cellular response towards DNA repair or apoptosis; therefore, screening approaches and therapeutic options targeting H2AX have been proposed. H2A.Z is enriched in euchromatin, acting as a proto-oncogene with established roles in hormone responsive cancers and overexpressed in endocrine-resistant disease. Other H2A family members have also been found altered in cancer, but their function remains unknown. Substantial progress has been made to understand histone H2A variants, their contribution to normal cellular function and to cancer development and progression. Yet, implementation of high resolution mass spectrometry is needed to further our knowledge on highly homologous H2A variants expression and function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号