ContextCallistemon citrinus Skeels (Myrtaceae) exhibits many biological activities.ObjectiveThis study analyzes for the first time, the toxicity, obesogenic, and antioxidant effects of C. citrinus in rats fed with a high fat-fructose diet (HFFD).Materials and methodsFour studies using male Wistar rats were conducted: (a) 7 groups (n = 3): control (corn oil) and ethanol extract of C. citrinus leaf (single oral dose at 100–4000 mg/kg) for acute toxicity; (b) 2 groups (n = 8): control (corn oil) and C. citrinus (1000 mg/kg/day) for 28 days for subacute toxicity; (c) 3 groups (n = 4) with single oral dose of lipid emulsion: control (lipid emulsion), C. citrinus and orlistat (250 and 50 mg/kg, respectively) for lipid absorption; (d) 4 groups (n = 6): control (normal diet) and 3 groups fed with HFFD: HFFD only, C. citrinus and simvastatin (oral dose 250 and 3 mg/kg, respectively) for 13 weeks. Antioxidant enzymes and biomarkers were evaluated and inhibition of pancreatic lipase was determined in vitro.ResultsToxicological studies of C. citrinus showed no differences in biochemical parameters and lethal dose (LD50) was higher than 4000 mg/kg. C. citrinus inhibited pancreatic lipase activity, with IC50 of 392.00 µg/mL, and decreased lipid absorption by 70%. Additionally, it reduced the body weight 22%, restored the activities of antioxidant enzymes, and reduced the biomarkers of oxidative stress.ConclusionsCallistemon citrinus showed an effect against oxidative stress by reducing biomarkers and induced antioxidant system, without toxic effects. 相似文献
Iron deficiency is the most common micronutrient deficiency in the world. Previous studies have shown that iron deficiency increases oxidative stress and decreases antioxidant enzymes, and studies of male infertility indicated that oxidative stress may affect male reproductive functions. The aim of this study was to investigate the effects of iron supplementation on spermatogenesis and testicular functions in iron-deficient rats. Three-week-old male Sprague Dawley (SD) rats were randomly divided into two groups: an iron-adequate control (AI group, 35 ppm FeSO4) and an iron-deficient group (ID group, <5 ppm FeSO4). After three weeks, the iron-deficient group was divided into an original iron-deficient group and five iron-supplemented groups, the latter fed diets containing different doses of FeSO4 (6, 12, 18, 24, and 35 ppm). After five weeks, blood and testis tissue were analyzed. We presented as median (interquartile range, IQR) for continuous measurements and compared their differences using the Kruskal–Wallis test followed by the Mann–Whitney U test among groups. The results showed that as compared with the AI group, the ID group had significantly lower serum testosterone and poorer spermatogenesis (The medians (QR) were 187.4 (185.6–190.8) of AI group vs. 87.5 (85.7–90.4) of ID group in serum testosterone, p < 0.05; 9.3 (8.8–10.6) of AI group vs. 4.9 (3.4–5.4) of ID group in mean testicular biopsy score (MTBS], p < 0.05); iron supplementation reversed the impairment of testis tissue. In the testosterone biosynthesis pathway, iron supplementation improved the lowered protein expressions of hydroxysteroid dehydrogenases caused by iron deficiency. Additionally, decreased activities of glutathione peroxidase and catalase, and increased cleaved-caspase 8 and caspase 3 expression, were found in the iron-deficient rats. The iron-supplemented rats that received > 12 ppm FeSO4 exhibited improvements in antioxidant levels. In conclusion, iron supplementation can abrogate testis dysfunction due to iron deficiency through regulation of the testicular antioxidant capacity. 相似文献
ContextSchisandra chinensis (Turcz.) Baill. (Magnoliaceae) essential oil (SCEO) composition is rich in lignans that are believed to perform protective effects in the liver.ObjectiveThis study investigates the effects of SCEO in the treatment of acetaminophen (APAP)-induced liver injury in mice.Materials and methodsC57BL/6 mice (n = 56) were randomly divided into seven groups: normal; APAP (300 mg/kg); APAP plus bicyclol (200 mg/kg); APAP plus SCEO (0.25, 0.5, 1, 2 g/kg). Serum biochemical parameters for liver function, inflammatory factors, and antioxidant activities were determined. The protein expression levels of Nrf2, GCLC, GCLM, HO-1, p62, and LC3 were assessed by western blotting. Nrf2, GCLC, HO-1, p62, and LC3 mRNA were detected by real-time PCR.ResultsCompared to APAP overdose, SCEO (2 g/kg) pre-treatment reduced the serum levels of AST (79.4%), ALT (84.6%), TNF-α (57.3%), and IL-6 (53.0%). In addition, SCEO (2 g/kg) markedly suppressed cytochrome P450 2E1 (CYP2E1) (15.4%) and attenuated the exhaustion of GSH (43.6%) and SOD (16.8%), and the accumulation of MDA (22.6%) in the liver, to inhibit the occurrence of oxidative stress. Moreover, hepatic tissues from our experiment revealed that SCEO pre-treatment mitigated liver injury caused by oxidative stress by increasing Nrf2, HO-1, and GCL. Additionally, SCEO activated autophagy, which upregulated hepatic LC3-II and decreased p62 in APAP overdose mice (p < 0.05).Discussion and conclusionsOur evidence demonstrated that SCEO protects hepatocytes from APAP-induced liver injury in vivo and the findings will provide a reliable theoretical basis for developing novel therapeutics. 相似文献
IntroductionOxidative stress (OS) occurs in cystic fibrosis (CF).ObjectiveThe objective of this work is to evaluate the influence of bacterial infection on biomarkers of OS (catalase [CAT], glutathione peroxidade [GPx], reduced glutathione [GSH]), markers of oxidative damage (protein carbonyls [PC], thiobarbituric acid reactive substances [TBARS]), together with the nutritional status and lung function in children with CF.MethodsCross‐sectional study including CF group (CFG, n = 55) and control group (CG, n = 31), median age: 3.89 and 4.62 years, respectively. CFG was distributed into CFG negative bacteriology (CFGB−, n = 27) or CFG positive bacteriology (CFGB+, n = 28), and CFG negative Pseudomonas aeruginosa (CFGPa−, n = 36) or CFG positive Pseudomonas aeruginosa (CFGPa+, n = 19).ResultsCompared with CG, CFG (P = .034) and CFGB+ (P = .042) had lower body mass index‐for‐age z‐score; forced expiratory volume in the first second was lower in CFGB+ and CFGPa+ (both P < .001). After adjusting for confounders and compared with CG: CFG showed higher TBARS (P ≤ .001) and PC (P = .048), and lower CAT (P = .004) and GPx (P = .003); the increase in PC levels was observed in CFGB+ (P = .011) and CFGPa+ (P = .001) but not in CFGB− (P = .510) and CFGPa− (P = .460).ConclusionsThese results indicate a systemic OS in children with CF. The presence of bacterial infection particularly Pseudomonas aeruginosa seems to be determinant to exacerbate the oxidative damage to proteins, in which PC may be a useful biomarker of OS in CF. 相似文献
Endometriosis, an estrogen-dependent chronic gynecological disease in women of reproductive age, is characterized by a systemic inflammation status involving also red blood cells (RBCs). In this study, we evaluated how the protein oxidative status could be involved in the worsening of RBC conditions due to dapsone intake in endometriotic women in potential treatment for skin or infection diseases. Blood samples from two groups of volunteers, control group (CG) and endometriosis patient group (PG), were analyzed for their content of band 3 tyrosine phosphorylation (Tyr-P) and high molecular weight aggregate (HMWA) in membranes, and glutathione (GSH) content and carbonic anhydrase (CA) activity in cytosol. In endometriotic patients, RBC showed the highest level of oxidative-related alterations both in membrane and cytosol. More interestingly, the addition of dapsone hydroxylamine (DDS-NHOH) could induce further increase of both membranes and cytosol markers, with an enhancement of CA activity reaching about 66% of the total cell enzyme amount. In conclusion, in PG the systemic inflammatory status leads to the inability of counteracting adjunctive oxidative stress, with a potential involvement of CA-related pathologies, such as glaucoma. Hence, the importance of the evaluation of therapeutic approaches worsening oxidative imbalance present in PG RBC is underlined. 相似文献
Summary The absorption and elimination of orally administered14C-phenylbutazone and the role of oxidation in its metabolism have been studied. The main routes of excretion of14C-phenylbutazone and its metabolites were investigated in 3 patients with rheumatoid arthritis, and in 1 patient with a T-tube in the common bile duct. Up to 9 days after an oral dose of14C-phenylbutazone 600 mg (30 µCi) 63% of the radioactivity was found in the urine and 14% had appeared in the faeces. The cumulative excretion of radioactivity in bile amounted to 9.5% of the dose in 4 days. Only 1% of the radioactivity in the urine and bile was due to unchanged phenylbutazone. The role of oxidative metabolism of phenylbutazone in healthy human subjects was studied by gas chromatography. In 3 subjects given a single dose of phenylbutazone 600 mg, only 8.3% of the dose was excreted in urine as oxidized metabolites after 5 days. However, in 5 patients who had taken phenylbutazone for more than 5 weeks, these metabolites accounted for 23.4% of the dose. These results suggest that oxidative metabolism becomes more important after continued administration of the drug. After a single dose of phenylbutazone, the side-chain oxidized metabolite (II) was the major free derivative excreted in urine, but the ring oxidized metabolite, oxyphenbutazone (I), was much more important than the former in plasma. However, after prolonged treatment there was little difference between the concentration of the two metabolites in plasma. This finding suggests that side-chain oxidation is increased relative to ring oxidation on prolonged treatment with phenylbutazone. A third derivative containing hydroxyl groups both in the phenyl ring and in the side-chain (metabolite III) was found in urine in experiments with phenylbutazone, but in only one out of 3 volunteers given repeated doses of oxyphenbutazone. 相似文献
Individuals with Down syndrome (DS), which is caused by triplication of human chromosome 21 (Hsa21), show numerous characteristic symptoms, such as intellectual disability, an impaired cognitive function, and accelerated aging-like phenotypes. Enhanced oxidative stress is assumed to be implicated as a mechanism underlying many of these symptoms of DS. Some genes coded in Hsa21, such as App, Sod1, and Ets2, are suggested as being involved in the exacerbation of oxidative stress. In addition, enhanced oxidative stress has been recently shown to be caused by dyshomeostasis of the redox-active bio-metal copper in the brain of a mouse model of DS. This review aims to summarize the current knowledge on enhanced oxidative stress in DS and suggest a possible molecular mechanism underlying the cognitive impairment of DS mediated by enhanced oxidative stress. 相似文献