首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   871篇
  免费   54篇
  国内免费   24篇
耳鼻咽喉   2篇
妇产科学   8篇
基础医学   92篇
口腔科学   100篇
临床医学   27篇
内科学   187篇
皮肤病学   58篇
神经病学   8篇
特种医学   24篇
外科学   83篇
综合类   40篇
预防医学   15篇
眼科学   17篇
药学   232篇
中国医学   25篇
肿瘤学   31篇
  2024年   3篇
  2023年   15篇
  2022年   77篇
  2021年   100篇
  2020年   33篇
  2019年   44篇
  2018年   36篇
  2017年   31篇
  2016年   38篇
  2015年   47篇
  2014年   55篇
  2013年   53篇
  2012年   43篇
  2011年   63篇
  2010年   32篇
  2009年   54篇
  2008年   43篇
  2007年   29篇
  2006年   16篇
  2005年   22篇
  2004年   22篇
  2003年   15篇
  2002年   11篇
  2001年   5篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有949条查询结果,搜索用时 15 毫秒
751.
Amorphous silicon (α-Si) film present an inexpensive and promising material for optoelectronic and nanophotonic applications. Its basic optical and optoelectronic properties are known to be improved via phase transition from amorphous to polycrystalline phase. Infrared femtosecond laser radiation can be considered to be a promising nondestructive and facile way to drive uniform in-depth and lateral crystallization of α-Si films that are typically opaque in UV-visible spectral range. However, so far only a few studies reported on use of near-IR radiation for laser-induced crystallization of α-Si providing less information regarding optical properties of the resultant polycrystalline Si films demonstrating rather high surface roughness. The present work demonstrates efficient and gentle single-pass crystallization of α-Si films induced by their direct irradiation with near-IR femtosecond laser pulses coming at sub-MHz repetition rate. Comprehensive analysis of morphology and composition of laser-annealed films by atomic-force microscopy, optical, micro-Raman and energy-dispersive X-ray spectroscopy, as well as numerical modeling of optical spectra, confirmed efficient crystallization of α-Si and high-quality of the obtained films. Moreover, we highlight localized laser-induced crystallization of α-Si as a promising way for optical information encryption, anti-counterfeiting and fabrication of micro-optical elements.  相似文献   
752.
BACKGROUND: A variety of methods have been used to identify and distinguish motor and sensory nerves. However, their application is limited clinically due to the complex operation, time consumption, and subjectivity. Raman spectroscopy is a minimally invasive method that provides information about molecular structure and constitutions and has been frequently used for tissue identification.
OBJECTIVE: To explore a time-efficient method of identifying motor and sensory fascicles in peripheral nerve trunk using laser micro-Raman spectroscopy.
DESIGN, TIME AND SETTING: A comparative observation was performed at the Key Laboratory of Excited States Physics in Chinese Academy of Science, Changchun Branch, from October 2004 to October 2005.
MATERIALS: JY-HR800 laser confocal micro-Raman spectrometer was purchased from Jobin-Yvon France; 2060-10 argon ion laser was purchased from Spectra-Physics, USA.
METHODS: A total of 32 New Zealand rabbits were selected and sacrificed. The roots of spinal nerves were exposed under an operating microscope, and the anterior and posterior roots, approximately 3-5 mm, were dissociated, and frozen as transverse sections of 30 μm thickness. The sections were examined by micro-Raman spectroscopy.
MAIN OUTCOME MEASURES: The specific spectral features of motor and sensory fascicles in the Raman spectra.
RESULTS: Sections of the same type of nerve fascicle showed reproducibility with similar spectral features. Significant differences in the spectral properties, such as the intensity and breadth of the peak, were found between motor and sensory fascicles in the frequency regions of 1 088, 1 276, 1 439, 1 579, and 1 659 cm^-1. With the peak intensity ratio of 1.06 (/1276//1439) as a standard, we could identify motor fascicles with a sensitivity of 88%, specificity of 94 %, positive predictive value of 93% and negative predictive value of 88%. In the range of 2 700-3 500 cm^-1, the half-peak width of the motor fascicles was narrow and sharp, while that of the sensory fascicles was relatively wider. A total of 91% of the peak features were in accordance with the identification standard.
CONCLUSION: Motor and sensory fascicles exhibit different characteristics in Raman spectra, which are constant and reliable. Therefore, it is an effective method to identify nerve fascicles according to the specific spectrum.  相似文献   
753.
The simultaneous quantitative analysis of sulfathiazole polymorphs (forms I, III and V) in ternary mixtures by attenuated total reflectance-infrared (ATR-IR), near-infrared (NIR) and Raman spectroscopy combined with multivariate analysis is reported. To reduce the effect of systematic variations, four different data pre-processing methods; multiplicative scatter correction (MSC), standard normal variate (SNV), first and second derivatives, were applied and their performance was evaluated using their prediction errors. It was possible to derive a reliable calibration model for the three polymorphic forms, in powder ternary mixtures, using a partial least squares (PLS) algorithm with SNV pre-processing, which predicted the concentration of polymorphs I, III and V. Root mean square errors of prediction (RMSEP) for ATR-IR spectra were 5.0%, 5.1% and 4.5% for polymorphs I, III and V, respectively, while NIR spectra had a RMSEP of 2.0%, 2.9%, and 2.8% and Raman spectra had a RMSEP of 3.5%, 4.1%, and 3.6% for polymorphs I, III and V, respectively. NIR spectroscopy exhibits the smallest analytical error, higher accuracy and robustness. When these advantages are combined with the greater convenience of NIR's “in glass bottle” sampling method both ATR-IR and Raman methods appear less attractive.  相似文献   
754.

Background

In the development of noninvasive glucose monitoring technology, it is highly desirable to derive a calibration that relies on neither person-dependent calibration information nor supplementary calibration points furnished by an existing invasive measurement technique (universal calibration).

Method

By appropriate experimental design and associated analytical methods, we establish the sufficiency of multiple factors required to permit such a calibration. Factors considered are the discrimination of the measurement technique, stabilization of the experimental apparatus, physics–physiology-based measurement techniques for normalization, the sufficiency of the size of the data set, and appropriate exit criteria to establish the predictive value of the algorithm.

Results

For noninvasive glucose measurements, using Raman spectroscopy, the sufficiency of the scale of data was demonstrated by adding new data into an existing calibration algorithm and requiring that (a) the prediction error should be preserved or improved without significant re-optimization, (b) the complexity of the model for optimum estimation not rise with the addition of subjects, and (c) the estimation for persons whose data were removed entirely from the training set should be no worse than the estimates on the remainder of the population. Using these criteria, we established guidelines empirically for the number of subjects (30) and skin sites (387) for a preliminary universal calibration. We obtained a median absolute relative difference for our entire data set of 30 mg/dl, with 92% of the data in the Clarke A and B ranges.

Conclusions

Because Raman spectroscopy has high discrimination for glucose, a data set of practical dimensions appears to be sufficient for universal calibration. Improvements based on reducing the variance of blood perfusion are expected to reduce the prediction errors substantially, and the inclusion of supplementary calibration points for the wearable device under development will be permissible and beneficial.  相似文献   
755.
ZnO nanostructures were grown on a Si(111) substrate using a vapor–liquid–solid (VLS) growth procedure (pristine ZnO) and annealed via a rapid thermal-annealing process in an argon atmosphere at 1100 °C (Ar-ZnO). The synthesized ZnO nanostructures were investigated through structural, electronic structural, morphological, optical, and magnetic characterizations. X-ray diffraction and selective area electron diffraction (SAED) measurements revealed that both samples exhibited the hexagonal wurtzite phase of nanocrystalline ZnO. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy carried out at the O K-edge inferred the presence of the intrinsic-defect states. Field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy images displayed the formation of ZnO nanostructures. The photoluminescence (PL) spectra demonstrated an emission band in the UV region along with an additional defect band in the visible region. PL spectral analysis confirmed the presence of intrinsic defects in Ar-ZnO nanowires, contributing to the enhanced emission in the visible region. The Raman spectra showed the characteristic band (434 cm−1) corresponding to the vibrational modes of hexagonal wurtzite ZnO, with an additional band attributable to intrinsic defects. DC magnetization measurements showed a ferromagnetic response in both samples with enhanced coercivity in Ar-ZnO (~280 Oe). In brief, both samples exhibited the presence of intrinsic defects, which are found to be further enhanced in the case of Ar-ZnO. Therefore, it is suggested that intrinsic defects have played an important role in modifying the optical and magnetic properties of ZnO with enhanced results for Ar-ZnO.  相似文献   
756.
The possibility of controlled scalable nanostructuring of surfaces by the formation of the plasmonic nanoparticles is very important for the development of sensors, solar cells, etc. In this work, the formation of the ensembles of silver nanoparticles on silicon and glass substrates by the magnetron deposition technique and the subsequent low-energy Ar+ ion irradiation was studied. The possibility of controlling the sizes, shapes and aerial density of the nanoparticles by the variation of the deposition and irradiation parameters was systematically investigated. Scanning electron microscopy studies of the samples deposited and irradiated in different conditions allowed for analysis of the morphological features of the nanoparticles and the distribution of their sizes and allowed for determination of the optimal parameters for the formation of the plasmonic-active structures. Additionally, the plasmonic properties of the resulting nanoparticles were characterized by means of linear spectroscopy and surface-enhanced Raman spectroscopy. Hereby, in this work, we demonstrate the possibility of the fabrication of silver nanoparticles with a widely varied range of average sizes and aerial density by means of a post-deposition ion irradiation technique to form nanostructured surfaces which can be applied in sensing technologies and surface-enhanced Raman spectroscopy (SERS).  相似文献   
757.
In order to control diesel exhaust emission, CeO2-SnO2/Al2O3 (CTA) mixed oxides were prepared and coated on perforated stainless steel (SS) filter plates, and the catalytic activities were analyzed in this work. The CeO2-SnO2 (different compositions of Ce/Sn—2:8; 1:1; 8:2) composites and Al2O3 were prepared separately via a co-precipitation approach, and CeO2-SnO2/Al2O3 (CTA) mixed oxides were attained by mechanical mixing of 75 wt% CeO2-SnO2 composites with 25 wt% Al2O3. X-ray diffraction (XRD) and Raman spectroscopy were performed for all three CeO2-SnO2/Al2O3 (CTA) mixed oxides; the CeO2-SnO2/Al2O3 (Ce/Sn-1:1) sample confirmed the presence of cubic and tetragonal mixed faces, which enhances the redox nature (catalytic activities). Various characterizations such as high-resolution transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), and a scanning electron microscope (SEM) were employed on CeO2-SnO2/Al2O3 (Ce/Sn-1:1) sample to investigate the structural, textural, compositional, and morphological properties. The CeO2-SnO2/Al2O3 (Ce/Sn-1:1) sample was coated on a perforated stainless steel (SS) filter plate via a simple, cost-effective, and novel method, and an exhaust emission test for various compression ratios (CR), injection pressure (IP), and load (L) was completed using an AVL Digas analyzer. The CeO2-SnO2/Al2O3 (Ce/Sn-1:1) sample, with a size of 10.22 nm and a high surface area of about 73 m2 g−1, exhibit appreciable catalytic properties.  相似文献   
758.
The article presents a systematic study of Sb-doped Zn1−xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on c-and a-oriented sapphire and non-polar structures grown on r-oriented substrates. A uniform depth distribution of the Sb dopant at level of 2 × 1020 cm−3 was determined by SIMS measurements. Raman spectroscopy revealed the presence of Sb-related modes in all samples. It also showed that Mg alloying reduces the compressive strain associated with Sb doping in ZnO. XPS analysis indicates that the chemical state of Sb atoms in ZnMgO is 3+, suggesting a substitutional position of SbZn, probably associated with two VZn vacancies. Luminescence and transmission spectra were measured to determine the band gaps of the Zn1−xMgxO layers. The band gap energies extracted from the transmittance measurements differ slightly for the a, c, and r substrate orientations, and the differences increase with increasing Mg content, despite identical growth conditions. The differences between the energy gaps, determined from transmission and PL peaks, are closely correlated with the Stokes shift and increase with the Mg content in the analyzed series of ZnMgO layers.  相似文献   
759.
目的 建立拉曼光谱法直接测定甲硝唑片含量的方法。方法 从便携式激光拉曼光谱仪的标准光谱图库中选出甲硝唑标准拉曼光谱图,再从甲硝唑标准拉曼光谱图(200~3000 cm-1)中筛选出适宜用于含量测定的特征峰,通过线性、重复性、回收率等方法学验证建立拉曼光谱直接测定甲硝唑片含量的方法,将甲硝唑片从药瓶中取出后直接用拉曼光谱法测定含量并将测定结果与HPLC测定结果做比较分析。结果 甲硝唑标准拉曼光谱图中1533 cm-1处的特征峰未受辅料干扰,专属性和稳定性最好,适宜用作含量测定的特征峰。拉曼光谱直接测定甲硝唑片含量的方法在26~1000 mg·g-1线性良好,线性方程为y=7.989 5x+0.3948,相关系数为0.9994;该方法的检测限和定量限分别为10和26 mg·g-1。在高、中、低3个含量下,该方法的日内和日间精密度的RSD值分别为0.08%,0.12%,0.11%和0.47%,0.48%,0.65%。同一甲硝唑片重复测定6次的RSD值为0.41%。在回收率试验中,该方法测定高、中、低含量的平均回收率分别为99.87%,100.2%,100.1%,RSD值分别为0.04%,0.07%,0.18%。拉曼光谱法1测定结果的预测相对误差范围为-0.7%~0.5%,最大误差绝对值为0.7%,拉曼光谱法2测定结果的预测相对误差范围为-0.7%~1.1%,最大误差绝对值为1.1%。结论 本法快速、简便,可以实现甲硝唑片含量的无损检测。  相似文献   
760.
Extensive Raman spectroscopy studies combined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) measurements were performed to investigate structural and chemical changes in diamond layers deposited by chemical vapour deposition (CVD) upon post-growth treatment with hydrogen. The aim of this study is to characterize the changes in micro-structural properties of diamond layers with different grain sizes and different contents of sp2 carbon phase. Hydrogenation or oxidization of diamond layer surface is often performed to modify its properties; however, it can also strongly affect the surface structure. In this study, the impact of hydrogenation on the structure of diamond layer surface and its chemical composition is investigated. Owing to their polycrystalline nature, the structural properties of CVD diamond layers can strongly differ within the same layer. Therefore, in this project, in order to compare the results before and after hydrogen treatment, the diamond layers are subjected to Raman spectroscopy studies in the vicinity of a T-shape marker fabricated on the surface of each diamond layer studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号