首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
基础医学   2篇
临床医学   1篇
内科学   21篇
综合类   4篇
预防医学   1篇
药学   6篇
  2023年   1篇
  2022年   10篇
  2021年   13篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1990年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
21.
The industrially-important WC-Co composite materials provide a useful, albeit complicated materials system for understanding the combined influences on hardness and strength properties of the constituent WC particle strengths, the particle sizes, their contiguities, and of Co binder hardness and mean free paths, and in total, the volume fraction of constituents. A connection is made here between the composite material properties, especially including the material fracture toughness, and the several materials-type considerations of: (1) related hardness stress-strain behaviors; (2) dislocation (viscoplastic) thermal activation characterizations; (3) Hall-Petch type reciprocal square root of particle or grain size dependencies; and (4) indentation and conventional fracture mechanics results. Related behaviors of MgO and Al2O3 crystal and polycrystal materials are also described for the purpose of making comparisons.  相似文献   
22.
热重法研究脱羧反应中MgO/浮石催化剂的积炭行为   总被引:1,自引:0,他引:1  
利用热重技术考察了反应温度和MgO含量对癸酸与醋酸合成甲基壬基酮MgO/浮石催化剂积炭的影响。确证镁盐流失不是积炭的直接原因,而反应温度对积炭有明显影响,适当调整反应温度可减少积炭的生成。  相似文献   
23.
就一种新型铁钛复合添加剂对提高合成镁钙砂抗水化性的影响进行了研究,结果表明:铁钛优先固溶到氧化钙中,通过离子扩散和液相作用。促进烧结,提高抗水化性。最佳添加量为w=0.01~0.015,铁钛最佳质量比为70/30。  相似文献   
24.
摘 要 目的:建立电感耦合等离子体原子发射光谱法测定复方田七胃痛胶囊中氧化镁、碳酸氢钠两组分的含量。方法: 样品经酸溶解,电感耦合等离子体原子发射光谱法测定其镁、钠元素的含量。结果: 镁、钠元素在0~30 μg·ml-1浓度范围内线性关系良好,相关系数分别为0.999 9,0.999 7;平均加样回收率分别为100.60%(RSD=4.1%,n=9)、99.65%(RSD=4.4%,n=9)。结论:本法专属性强、操作简便、结果准确,可用于复方田七胃痛胶囊中氧化镁、碳酸氢钠的含量测定。  相似文献   
25.
Introduction: Recently, zein-coated MgO nanowires were synthesized, which could be promising as an effective antimicrobial compounds that can be combined in the preparation of a diversity of new dental formulations. However, there is a deficiency of information concerning their toxicological profile regarding the human health.Objective: This in vivo study aimed to explore the hepato- and nephrotoxicity of low versus high doses of zein-coated MgO nanowires in rats.Materials and Methods: A 21-day recurrent dose toxicity research was carried out. Wistar rats were divided into 2 main groups, males and females (n = 18). Each group was further subdivided into 3 subgroups: control, MgO-zein nanowires low dose, MgO-zein nanowires high dose. The low dose used was 100 mg/kg while the high dose used was 200 mg/kg.Results: The results showed that MgO-zein nanowires at both doses did not affect the electrolytes levels compared to the control levels. Also, they did not produce any significant alteration in liver function markers in both rats'' genders. MgO-zein nanowires at both doses did not produce any effective alteration in serum creatinine in treated rats of both genders. Moreover, very minimal histological alterations were observed in both doses of MgO-zein nanowires in liver and kidney of both genders.Conclusion: Based on the observed safety of zein-coated MgO nanowires, it can be utilized as an effective antimicrobial compound that can be combined in the preparation of a diversity of new dental formulations.

KEY MESSAGES

  • MgO NPs are globally used in multiple fields including the therapeutic field.
  • Zein has wide pharmaceutical applications especially coating the tablet over sugar.
  • There are no cytotoxic studies that investigate MgO-zein nanowires safety until now.
  相似文献   
26.
High-energy heavy ion irradiation can produce permanent damage in the target material if the density of deposited energy surpasses a material-dependent threshold value. It is known that this threshold can be lowered in the vicinity of the surface or in the presence of defects. In the present study, we established threshold values for Al2O3, MgO and CaF2 under the above-mentioned conditions, and found those values to be much lower than expected. By means of atomic force microscopy and Rutherford backscattering spectrometry in channelling mode, we present evidence that ion beams with values of 3 MeV O and 5 MeV Si, despite the low density of deposited energy along the ion trajectory, can modify the structure of investigated materials. The obtained results should be relevant for radiation hardness studies because, during high-energy ion irradiation, unexpected damage build-up can occur under similar conditions.  相似文献   
27.
Chemical resistance of commercial refractory raw materials against Cu slag is critical to consider them as candidates for the production of refractories used in Cu metallurgy. In this study, we show the comparative results for the corrosion resistance of four commercial refractory raw materials—magnesia chromite co-clinkers FMC 45 and FMC 57, PAK, and fused spinel SP AM 70—against aggressive, low-melting PbO-rich Cu slag (Z1) determined by hot-stage microscopy (up to 1450 °C) and pellet test (1100 and 1400 °C). Samples were characterized after the pellet test by XRD, SEM/EDS, and examination of their physicochemical properties to explore the corrosion reactions and then assess comparatively their chemical resistance. Since many works have focused on corrosion resistance of refractory products, the individual refractory raw materials have not been investigated so far. In this work, we show that magnesia chromite co-clinker FMC 45 exhibits the most beneficial properties considering its application in the production of refractories for the Cu industry. Forsterite (Mg2SiO4) and güggenite (Cu2MgO3) solid solutions constitute corrosion products in FMC 45, and its mixture with slag shows moderate dimensional stability at high temperatures. On the other hand, the fused spinel SP AM 70 is the least resistant to PbO-rich Cu slag (Z1); it starts to sinter at 970 °C, followed by a fast 8%-shrinkage caused by the formation of güggenite solid solution in significant amounts.  相似文献   
28.
The polyolefin to lighter molecules reaction reduces the waste-plastic residues to produce fuels and valuable chemicals. Commercial MgO light and CaO were used as catalysts for the direct polyethylene and polypropylene liquefaction in N2 or CO2 atmospheres. The products were analyzed (ATR-FTIR, GC-FID/TCD, GC-FID, density, refractive index). The use of MgO light and CaO improved the conversion of propylene and ethylene to liquid products. In addition, low gaseous and solid products yields were obtained. A good production of organic liquids in the gasoline, diesel and kerosene boiling range was obtained. The use of CO2, in some cases, led to a higher conversion into liquids compared with the reactions performed in the N2 atmosphere. In addition, the use of the CO2 atmosphere led to a higher content of products with a boiling range in the diesel and kerosene ranges.  相似文献   
29.
Nanocluster aggregation sources based on magnetron-sputtering represent precise and versatile means to deposit a controlled quantity of metal nanoparticles at selected interfaces. In this work, we exploit this methodology to produce Ag/MgO nanoparticles (NPs) and deposit them on a glass/FTO/TiO2 substrate, which constitutes the mesoscopic front electrode of a monolithic perovskite-based solar cell (PSC). Herein, the Ag NP growth through magnetron sputtering and gas aggregation, subsequently covered with MgO ultrathin layers, is fully characterized in terms of structural and morphological properties while thermal stability and endurance against air-induced oxidation are demonstrated in accordance with PSC manufacturing processes. Finally, once the NP coverage is optimized, the Ag/MgO engineered PSCs demonstrate an overall increase of 5% in terms of device power conversion efficiencies (up to 17.8%).  相似文献   
30.
Crystallization under hydrothermal conditions allowed us to prepare nanometric powders in the MgO–ZrO2 system of different magnesia concentrations. Sintering runs of these powder compacts studied using dilatometry measurements during heating and cooling revealed essential differences in their behavior. The microstructure of the resulting polycrystal is strongly related to the magnesia content in the starting powder, which strongly influences the phase composition of the resulting material and its mechanical properties. It should be emphasized that the novel processing method of such materials differs from the usual applied technology and leads to magnesia–zirconia materials of a different microstructure than that of “classical” materials of this kind.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号