首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   38篇
  国内免费   7篇
耳鼻咽喉   1篇
儿科学   10篇
妇产科学   8篇
基础医学   214篇
口腔科学   23篇
临床医学   59篇
内科学   146篇
皮肤病学   26篇
神经病学   39篇
特种医学   9篇
外科学   77篇
综合类   38篇
预防医学   37篇
眼科学   17篇
药学   127篇
中国医学   49篇
肿瘤学   60篇
  2023年   4篇
  2022年   13篇
  2021年   20篇
  2020年   22篇
  2019年   33篇
  2018年   52篇
  2017年   38篇
  2016年   19篇
  2015年   36篇
  2014年   106篇
  2013年   71篇
  2012年   62篇
  2011年   53篇
  2010年   45篇
  2009年   64篇
  2008年   58篇
  2007年   49篇
  2006年   41篇
  2005年   34篇
  2004年   30篇
  2003年   16篇
  2002年   14篇
  2001年   11篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   9篇
  1996年   2篇
  1995年   8篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有940条查询结果,搜索用时 31 毫秒
71.
The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway is important for both long-term survival and timing of the progression of oligodendrocyte differentiation. Oligodendroglial cells treated with MEK inhibitor were distinguished by using stage specific markers: NG2 proteoglycan, A2B5, 2′3′nucleotide-cyclic 3′phosphodiesterase (CNPase) and myelin basic protein (MBP), and classified according to their morphology into different developmental stages. Treatment significantly increased the number of cells with more immature morphologies and decreased the number of mature cells. Furthermore, it increased the number of rounded cells that could not be classified into any of the oligodendroglial developmental stages. The strongest effects were usually observed shortly after treatment. Rounded cells were CNPase/MBP positive and they were not stained by anti-NG2 or A2B5, indicating that they were mature cells unable either to extend and/or to maintain their processes. These data showed an effect of the MAPK/ERK pathway on oligodendroglial branching, with possible consequences for the formation of the myelin sheath.  相似文献   
72.
73.
The extension of multiple oligodendroglial branched processes towards axons is an important event during the early stages of myelination that likely requires remodeling of the extracellular matrix (ECM) microenvironment via matrix metalloproteinases (MMPs). Here we investigated whether fibronectin-mediated inhibition of myelin sheet formation in oligodendrocytes correlated with an altered MMP activity. Our data reveal that fibronectin enhanced, in a PKC-dependent manner, the net activity of MMP-9, but not its expression, in conditioned medium of oligodendrocytes. Residual cellular MMP-9 activity on fibronectin was confined to the cell body, whereas MMP-9 activity on laminin-2 was localized along extending processes of oligodendrocytes. The mislocalization of MMP-9 activity on fibronectin correlated with a perturbed outgrowth of oligodendroglial processes. In conclusion, our findings suggest that ECM molecules influence both the net activity of secreted MMP and the spatial distribution of cell-associated MMP activity, and thereby morphological oligodendrocyte differentiation.  相似文献   
74.
BACKGROUND & AIMS: Infliximab induces immune cell apoptosis by outside-to-inside signaling through transmembrane tumor necrosis factor-alpha (mTNF). However, in inflamed gut, myofibroblasts also produce TNF-alpha, and the affects of anti-TNF antibodies on these structural cells are unknown. We investigated the action of infliximab on apoptosis, the production of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMP)-1, and migration of Crohn's disease (CD) myofibroblasts. METHODS: Colonic myofibroblasts were isolated from patients with active CD and controls. mTNF was evaluated by Western blotting and flow cytometry. Infliximab-treated myofibroblasts were analyzed for apoptosis by Annexin V staining and caspase-3. TIMP-1 and MMPs were measured by Western blotting, and fibroblast migration was assessed by using an in vitro wound-healing scratch assay. RESULTS: CD myofibroblasts showed higher mTNF expression than control myofibroblasts. Infliximab had no effect on CD myofibroblast apoptosis, caspase-3 activation, and production of MMP-3 and MMP-12. However, infliximab induced a significant dose-dependent increase in TIMP-1 production, which was inhibited by the p38 mitogen-activated protein kinase inhibitor SB 203580. The anti-TNF agents adalimumab, etanercept, and p55 TNF-receptor-human IgG fusion protein also increased TIMP-1 production. The migration of CD myofibroblasts was enhanced significantly by infliximab and recombinant human TIMP-1, and infliximab-induced migration was inhibited by anti-TIMP-1 neutralizing antibody. Infliximab also decreased CD myofibroblast collagen production. CONCLUSIONS: Our findings show a novel therapeutic pathway for anti-TNF therapies in enhancing TIMP-1 production and myofibroblast migration, which may reduce MMP activity and facilitate the wound healing.  相似文献   
75.
BACKGROUND & AIMS: We investigated whether endothelial progenitor cell (EPC) transplantation could reduce established liver fibrosis and promote hepatic regeneration by isolating rat EPCs from bone marrow cells. METHODS: Recipient rats were injected intraperitoneally with carbon tetrachloride (CCl(4)) twice weekly for 6 weeks before initial administration of EPCs. CCl(4) was then readministered twice weekly for 4 more weeks, and EPC transplantation was carried out for these same 4 weeks. RESULTS: At 7 days in culture, the cells expressed Thy-1, CD31, CD133, Flt-1, Flk-1, and Tie-2, suggesting an immature endothelial lineage. Immunohistochemical analyses showed fluorescent-labeled, transplantation EPCs were incorporated into the portal tracts and fibrous septa. Single and multiple EPC transplantation rats had reduced liver fibrosis, with decreased alpha2-(I)-procollagen, fibronectin, transforming growth factor-beta, and alpha-smooth muscle actin-positive cells. Film in situ zymographic analysis revealed strong gelatinolytic activity in the periportal area, in accordance with EPC location. Real-time polymerase chain reaction analysis of multiple EPC-transplantation livers showed significantly increased messenger RNA levels of matrix metalloproteinase (MMP)-2, -9 and -13, whereas tissue inhibitor of metalloproteinase-1 expression was significantly reduced. Expression of hepatocyte growth factor, transforming growth factor-alpha, epidermal growth factor, and vascular endothelial growth factor was increased in multiple EPC-transplantation livers, while hepatocyte proliferation increased. Transaminase, total bilirubin, total protein, and albumin levels were maintained in EPC-transplantation rats, significantly improving survival rates. CONCLUSIONS: We conclude that single or repeated EPC transplantation halts established liver fibrosis in rats by suppressing activated hepatic stellate cells, increasing matrix metalloproteinase activity, and regulating hepatocyte proliferation.  相似文献   
76.
Tissue factor (TF) initiates the protease coagulation cascade in response to tissue injury. Homozygous deficiency of murine TF results in embryonic lethality, which is rescued by low-level expression of human TF. These low-TF mice have been shown to develop cardiac fibrosis. We tested the hypothesis that the development of cardiac fibrosis in low-TF mice results from dysregulated protease expression and is affected by gender. Mice were divided into the age groups 2-5, 6-12, 13-18 and 19+ weeks. Fibrosis was assessed by trichrome staining. Protease expression was measured in male and female mice by RT-PCR for mRNA and zymography, ELISA or immunoblot for protein. Urokinase plasminogen activator (uPA) activity was determined by zymography and chromogenic substrate assay. A marked gender effect was noted for the development of fibrosis, with interstitial collagen deposition occurring from 9 weeks in male low-TF mice, but not until 19 weeks in low-TF females. This delayed onset in females was accompanied by delayed up-regulation of molecular markers of injury. Matrix metalloproteinase (MMP)-3 and tissue inhibitor of metalloproteinase (TIMP)-1 expression were up-regulated in the hearts of male low-TF mice from 6 to 12 weeks and in females from 19 weeks. MMP/TIMP dysregulation was not seen prior to cardiac fibrosis and did not appear to explain the gender differences. However, uPA expression and activity were down-regulated prior to cardiac fibrosis in low-TF females, but were up-regulated in age-matched males. This suggests that the down-regulation of uPA in female low-TF mice protects them from more severe cardiac fibrosis.  相似文献   
77.
Biocompatibility of acellular human pericardium   总被引:3,自引:0,他引:3  
BACKGROUND: Previous studies have shown successful decellularization of human pericardium without affecting the major structural components and strength of the matrix. The aim of this study was to assess the biocompatibility and reseeding potential of the acellular human pericardial scaffold. MATERIALS AND METHODS: Pericardia were treated sequentially with hypotonic buffer, sodium dodecyl sulfate, and a nuclease solution. The presence of cellular attachment factors after decellularization was evaluated using immunohistochemistry. The scaffold was seeded with dermal fibroblasts and cellular attachment to and numbers of cells penetrating were assessed over time. Biocompatibility was also evaluated following subcutaneous implantation into a mouse model for three months. RESULTS: After decellularization, the scaffold stained positively for fibronectin, but collagen IV and laminin staining was reduced. Seeded fibroblasts attached to the mesothelial surface and were visualized in the tissue within a week of seeding. The majority of fibroblasts in the tissue were viable and there was evidence of remodeling of the matrix. Analysis of the explanted tissues from mice showed that fresh/frozen and glutaraldehyde-fixed pericardia were encapsulated with a thick layer of inflammatory cells and fibrous tissue. In contrast, the decellularized scaffold was infiltrated with myofibroblasts, CD34+ cells and macrophages, indicating a healthy repair process. Compared with the glutaraldehyde-fixed tissue, the calcium content of the fresh/frozen and decellularized pericardia was negligible. CONCLUSIONS: The pericardial scaffold was biocompatible in vitro and in the mouse model in vivo.  相似文献   
78.
For cancer progression and metastatic dissemination, cancer cells migrate and penetrate through extracellular tissues. Cancer invasion is frequently facilitated by proteolytic processing of components of the extracellular matrix (ECM). The cellular regions mediating proteolysis are diverse and depend upon the physical structure, composition, and dimensionality of the ECM contacted by the cell surface. Cancer cells migrating across 2D substrate contain proteolytic structures such as lamellipodia, invadopodia, and the trailing edge. Likewise, invasive mesenchymal migration through 3D fibrillar ECM, as monitored for HT1080 fibrosarcoma and MDA-MB-231 breast carcinoma cells by submicron-resolved imaging, is mediated by several types of proteolytic structures rich in filamentous actin, ss1 integrin, and MT1-MMP with distinct location and function. These comprise (i) anterior pseudopod bifurcataions and the nucleus corresponding to zones of local cell compression by constraining collagen fibers, (ii) lateral small spikes that protrude into the ECM and cause small spot-like proteolytic foci, and (iii) a strongly proteolytic trailing edge sliding along reorganized ECM fibers. Through their combined action these proteolytic surface structures cleave, remove, and realign ECM barriers, support rear end retraction, generate tube-like matrix defects and laterally widen existing tracks during 3D tissue invasion.  相似文献   
79.
80.
As our knowledge on the mechanisms that control cell function increases, more complex signaling pathways and quite intricate cross-talks among regulatory proteins are discovered. Establishing accurate interactions between cellular networks is essential for a healthy cell and different alterations in signaling are known to underline human disease. Transforming growth factor beta (TGFbeta) is an extracellular cytokine that regulates such critical cellular responses as proliferation, apoptosis, differentiation, angiogenesis and migration, and it is assumed that the latency-associated protein LTBP-1 plays a relevant role in TGFbeta targeting and activation in the extracellular matrix (ECM). The dioxin receptor (AhR) is a unique intracellular protein long studied because of its critical role in xenobiotic-induced toxicity and carcinogenesis. Yet, a large set of studies performed in cellular systems and in vivo animal models have suggested important xenobiotic-independent functions for AhR in cell proliferation, differentiation and migration and in tissue homeostasis. Remarkably, AhR activity converges with TGFbeta-dependent signaling through LTBP-1 since cells lacking AhR expression have phenotypic alterations that can be explained, at least in part, by the coordinated regulation of both proteins. Here, we will discuss the existence of functional interactions between AhR and TGFbeta signaling. We will focus on regulatory and functional aspects by analyzing how AhR status determines TGFbeta activity and by proposing a mechanism through which LTBP-1, a novel AhR target gene, mediates such effects. We will integrate ECM proteases in the AhR-LTBP-1-TGFbeta axis and suggest a model that could help explain some in vivo phenotypes associated to AhR deficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号