首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   904篇
  免费   48篇
  国内免费   9篇
耳鼻咽喉   1篇
儿科学   8篇
妇产科学   5篇
基础医学   131篇
口腔科学   14篇
临床医学   50篇
内科学   95篇
皮肤病学   5篇
神经病学   226篇
特种医学   32篇
外科学   59篇
综合类   36篇
预防医学   27篇
眼科学   6篇
药学   215篇
中国医学   6篇
肿瘤学   45篇
  2024年   1篇
  2023年   6篇
  2022年   11篇
  2021年   29篇
  2020年   15篇
  2019年   49篇
  2018年   69篇
  2017年   40篇
  2016年   18篇
  2015年   21篇
  2014年   46篇
  2013年   46篇
  2012年   59篇
  2011年   69篇
  2010年   67篇
  2009年   61篇
  2008年   58篇
  2007年   42篇
  2006年   33篇
  2005年   31篇
  2004年   20篇
  2003年   27篇
  2002年   22篇
  2001年   23篇
  2000年   11篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1985年   9篇
  1984年   15篇
  1983年   7篇
  1982年   3篇
  1981年   12篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有961条查询结果,搜索用时 15 毫秒
41.
杨红卫 《中外医疗》2010,29(27):3-4
目的探讨大麻素受体1(CB1)在N-花生四烯酸乙醇胺(AEA)对海马齿状回颗粒细胞的抑制性突触的作用。方法应用电压钳技术在海马脑片齿状回颗粒细胞记录抑制性突触后电流(IPSC),观察CB1受体的特异性抑制剂SR141716A(SR)和AEA对齿状回IPSC的影响。结果 (1)AEA对齿状回的抑制性突触具有抑制作用;(2)SR可翻转AEA对齿状回IPSC的抑制效应。结论 CB1受体介导AEA对齿状回抑制性突触的抑制作用。  相似文献   
42.
The posterior cingulate cortex (PCC) has recently been implicated in the pathophysiology of schizophrenia, through both animal and human studies. We have recently shown abnormal glutamate, GABA, and muscarinic receptor binding in the PCC in schizophrenia. In addition, there is evidence for an abnormal endogenous cannabinoid system in schizophrenia. The endogenous cannabinoid system, including CB1 receptors, is proposed to play a role in modulating neurotransmission via affecting the release of a variety of neurotransmitters, (e.g. GABA). In the present study, we used quantitative autoradiography to investigate the binding of [3H]CP-55940 to CB1 receptors in the PCC in schizophrenia subjects compared to controls. A significant 25% increase in CB1 binding was found in the superficial layers (layer I, II) of the PCC of schizophrenia subjects compared to controls, none of whom had recently used cannabis. There was no statistical difference in CB1 binding in the deeper layers (layers III–VI) between the two groups. There were no significant correlations between CB1 binding density and age, PMI, pH, brain weight, freezer storage time, or final recorded antipsychotic drug dose. These results show an increase in CB1 receptor density in the PCC in schizophrenia, and therefore provide support for a role of the endogenous cannabinoid system in schizophrenia.  相似文献   
43.
Cannabinoids have profound effects on synaptic function and behavior. Of the two cloned cannabinoid receptors, cannabinoid receptor 1 (CB1) is widely distributed in the CNS and accounts for most of the neurological effects of cannabinoids, while cannabinoid receptor 2 (CB2) expression in the CNS is very limited. The presence of additional receptors [i.e. cannabinoid receptor 3 (CB3)] is suggested by growing evidence of cannabinoid effects that are not mediated by CB1 or CB2. The most direct functional evidence for a CB3 comes from a study in hippocampus where deletion of CB1 was shown to have no effect on cannabinoid-mediated suppression of the excitatory synapse between Schaffer collateral/commissural fibers and CA1 pyramidal cells [Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience 106:1-4]. In contrast, we report here that in extracellular field recordings, the cannabinoid agonist WIN 55,212-2 (5 microM) had no effect on Schaffer collateral/commissural fiber-CA1 pyramidal cell (Sch-CA1) synaptic transmission in slices from two independently made cannabinoid receptor 1-/- lines [Zimmer et al 1999 and Ledent et al 1999] while strongly suppressing Sch-CA1 synaptic transmission in CB1+/+ mice of the background strains. Also, we observed robust cannabinoid-mediated suppression of the Sch-CA1 synapse in pure C57BL/6 mice, contradicting a recent report that cannabinoid suppression of this synapse is absent in this strain [Hoffman AF, Macgill AM, Smith D, Oz M, Lupica CR (2005) Species and strain differences in the expression of a novel glutamate-modulating cannabinoid receptor in the rodent hippocampus. Eur J Neurosci 22:2387-2391]. Our results strongly suggest that cannabinoid-induced suppression of the Sch-CA1 synapse is mediated by CB1. Non-canonical cannabinoid receptors do not seem to play a major role in inhibiting transmitter release at this synapse.  相似文献   
44.
Ca2+稳态平衡的调节在少突胶质细胞功能和存活中起重要作用.大麻素CB1和CB2受体在许多细胞中调节Ca2+水平和/或K+电流.本文利用培养的少突胶质细胞中,通过增高细胞外K+浓度(50 mM诱导膜去极化,研究大麻素复合物在此过程引发钙内流中的作用.CB2受体激动剂ACEA导致去极化诱导的少突胶质细胞胞浆的Ca2+瞬变表达浓度依赖性抑制,最大效应为(94±3)%,半效应浓度(EC50)为(1.3±0.03)μM.这种作用可被CB2/CB2激动剂CP55、940、内源性大麻素类AEA和2-AG所模拟,但是CB2受体选择性激动剂JWH133没有作用.CB2受体拮抗剂AM251(1μM)也可减少细胞外高K+诱导的Ca2+反应.但不能防止ACEA(3 μM)诱发的抑制效应.然而,ACEA和AEA减少去极化诱导的Ca2+瞬变的能力在CB2受体敲除小鼠和经百日咳毒素预处理的少突胶质细胞中明显降低.内流性K2+通道阻断剂BaCI:(300 μM)和CsCl2(1 mM)降低电压诱导的Ca2+内流并部分阻断ACEA的抑制效应.本文表明,大麻素抑制少突胶质细胞中去极化诱导的Ca2+瞬变是通过包括PTX-敏感的Gi/o蛋白和阻断K2+内流通道的CB2受体依赖性和非依赖性机制.  相似文献   
45.
RATIONALE: Recent studies have shown that several pharmacological actions induced by cannabinoids, including antinociception and reward, involve the participation of the endogenous opioid system. OBJECTIVES: The present study was designed to examine the possible involvement of the different opioid receptors in the anxiolytic-like responses induced by Delta(9)-tetrahydrocannabinol (THC). METHODS: The administration of a low dose of THC (0.3 mg/kg) produced clear anxiolytic-like responses in the light-dark box, as previously reported. The effects of the pretreatment with the CB(1) cannabinoid receptor antagonist, SR 141716A (0.5 mg/kg), or the micro -opioid receptor antagonist, beta-funaltrexamine (5 mg/kg), the delta-opioid receptor antagonist, naltrindole (2.5 mg/kg) and the kappa-opioid receptor antagonist, nor-binaltorphimine (2.5 mg/kg) were evaluated on anxiolytic-like responses induced by THC. RESULTS: SR 141716A completely blocked the anxiolytic-like response induced by THC, suggesting that this effect is mediated by CB(1) cannabinoid receptors. The micro -opioid receptor antagonist beta-funaltrexamine and the delta-opioid receptor antagonist naltrindole, but not the kappa-opioid receptor antagonist nor-binaltorphimine, abolished THC anxiolytic-like effects, suggesting an involvement of micro - and delta-opioid receptors in this behavioural response. CONCLUSIONS: These results demonstrate that the endogenous opioid system is involved in the regulation of anxiety-like behaviour by cannabinoids and provide new findings to clarify further the interaction between these two neuronal systems.  相似文献   
46.
BAY 38-7271 is a new high-affinity cannabinoid receptor agonist with strong neuroprotective efficacy in a rat model of traumatic brain injury (acute subdural hematoma, SDH). In the present study we investigated CB1 receptor signal transduction by [35S]GTPgammaS binding in situ and in vitro to assess changes in receptor functionality after SDH. Further, we continued to investigate the neuroprotective properties of BAY 38-7271 in the rat SDH and transient middle cerebral artery occlusion (tMCA-O) model as well as the efficacy with respect to SDH-induced brain edema. [35S]GTPgammaS binding revealed minor attenuation of CB1 receptor functionality on brain membranes from injured hemispheres when compared to non-injured hemispheres or controls. In the rat SDH model, BAY 38-7271 displayed strong neuroprotective efficacy when administered immediately after SDH either as a 1 h (65% infarct volume reduction at 0.1 microg/kg) or short-duration (15 min) infusion (53% at 10 microg/kg). When administered as a 4 h infusion with a 5 h delay after injury, significant neuroprotection was observed (49% at 1.0 microg/kg/h). This was also observed when BAY 38-7271 was administered as a 5 h delayed 15 min short-duration infusion (64% at 3 microg/kg). In addition, the neuroprotective potential of BAY 38-7271 was demonstrated in the rat tMCA-O model, displaying pronounced neuroprotective efficacy in the cerebral cortex (91% at 1 ng/kg/h) and striatum (53% at 10 ng/kg/h). BAY 38-7271 also reduced intracranial pressure (28% at 250 ng/kg/h) and brain water content (20% at 250 ng/kg/h) when determined 24 h post-SDH. Based on these data it is concluded that the neuroprotective efficacy of BAY 38-7271 is mediated by multiple mechanisms triggered by cannabinoid receptors.  相似文献   
47.
Purpose: To characterise the pharmacokinetics and metabolism in mice of 5-[N,N-bis(2-chloroethyl)amino]-2,4-dinitrobenzamide (SN 23862), the lead compound of a new class of bioreductive drugs in which a nitrogen mustard is activated by nitroreduction. Comparison is made with the corresponding aziridine derivative CB 1954. Methods: Male C3H/HeN mice, bearing s.c. KHT tumours, received 3H-labelled SN 23862 or CB 1954 i.v. at 200 μmol/kg. Plasma, urine and tumour samples were assayed for total radioactivity, and for parent compounds by HPLC. Metabolites were identified by 1H-NMR and mass spectrometry. Cytotoxicity of compounds against Chinese hamster AA8 cells was determined by growth inhibition assay. Results: The plasma pharmacokinetics of SN 23862 and CB 1954 were similar, with half-lives of 1.1 and 1.2 h, respectively. SN 23862 provided tumour/plasma ratios and absolute tumour AUC values almost two times higher than CB 1954. Despite this, SN 23862 was more extensively metabolised than CB 1954, the major route being sequential oxidative dechloroethylation of the nitrogen mustard moiety to the relatively non-toxic half mustard and 5-amine. The inferred chloroacetaldehyde co-product was 260 times more potent than SN 23862. A tetrahydroquinoxaline metabolite resulting from reduction of the 4-nitro group followed by intramolecular alkylation was weakly cytotoxic, while the more cytotoxic 2-amino derivative of SN 23862 was detected in trace amounts. CB 1954 was metabolised by analogous pathways, but the 4- and 2-amine nitroreduction products were the major metabolites while oxidative dealkylation was minor. Conclusion: The lesser propensity for SN 23862 to undergo nitroreduction in the host, relative to CB 1954, argues that dinitrobenzamide mustards may be preferable to the corresponding aziridines as bioreductive prodrugs for cancer treatment. However, the toxicological significance of oxidative metabolism of the bis(2-chloroethyl)amine moiety needs to be addressed. Received: 7 March 2000 / Accepted: 9 June 2000  相似文献   
48.
谷氨酸毒性损伤致PC12细胞NMDAR与CB表达的变化   总被引:1,自引:0,他引:1  
吴南  冯华  朱刚  王宪荣 《重庆医学》2003,32(2):137-139
目的 探讨谷氨酸毒性损伤后PC12细胞NMDAR与CB表达的变化及意义。方法 建立谷免氨酸毒性损伤模型后,应用免疫组化及流式细胞仪的方法,定位、定量观测PC12细胞NMDAR与CB表达的变化。结果 NMDAR表达于胞膜上,谷氨酸致其表达增强,CB表达于胞浆中,谷氨酸致其表达减弱,在4h时相较1h略有恢复。结论 NMDAR与CB在神经细胞继发性损伤中可能起着重要作用。  相似文献   
49.
50.
A novel, non-CB1 cannabinoid receptor has been defined by the persistence of inhibition of glutamatergic EPSPs by the cannabinoid receptor agonist WIN55,212-2 in mice lacking the cloned CB1 receptor (CB1-/-) (Hajos et al., 2001). This novel receptor was also distinguished from CB1 by its sensitivity to the antagonist SR141716A and its insensitivity to the antagonist AM251 (Hajos & Freund, 2002). We have chosen to refer to this putative receptor as CBsc due to its identification on Schaffer collateral axon terminals in the hippocampus. We examined properties of CBsc receptors in Sprague Dawley (SD) rats and two strains of wild-type (WT) mice (C57BL/6J and CD1) used as backgrounds for two independent lines of CB1-/- mice (Ledent et al., 1999; Zimmer et al., 1999). The inhibition of synaptic glutamate release by WIN55,212-2 was observed in hippocampal slices from WT CD1 mice and SD rats but was absent in WT C57 mice. We also found that AM251 and SR141716A antagonized the effect of WIN55,212-2 in hippocampal slices from CD1 mice and SD rats demonstrating a lack of selectivity of these ligands for CB1 and CBsc receptors in these animals. The results indicate that the glutamate-modulating CBsc cannabinoid receptor is present in the hippocampi of CD1 mice and SD rats but not in C57BL/6J mice. Thus, we have identified animal models that may permit the study of cannabinoids independently of the novel CBsc receptor (C57CB1+/+), the CBsc receptor independently of the cloned CB1 receptor (CD1CB1-/-), or in the absence of both receptors (C57CB1-/-).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号