首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11876篇
  免费   706篇
  国内免费   226篇
耳鼻咽喉   63篇
儿科学   349篇
妇产科学   783篇
基础医学   2238篇
口腔科学   976篇
临床医学   1180篇
内科学   1197篇
皮肤病学   66篇
神经病学   1968篇
特种医学   289篇
外科学   452篇
综合类   970篇
现状与发展   1篇
一般理论   3篇
预防医学   1032篇
眼科学   205篇
药学   519篇
  3篇
中国医学   279篇
肿瘤学   235篇
  2024年   29篇
  2023年   186篇
  2022年   373篇
  2021年   593篇
  2020年   426篇
  2019年   394篇
  2018年   433篇
  2017年   408篇
  2016年   392篇
  2015年   373篇
  2014年   650篇
  2013年   870篇
  2012年   519篇
  2011年   622篇
  2010年   522篇
  2009年   509篇
  2008年   609篇
  2007年   552篇
  2006年   533篇
  2005年   479篇
  2004年   388篇
  2003年   310篇
  2002年   272篇
  2001年   198篇
  2000年   203篇
  1999年   167篇
  1998年   162篇
  1997年   156篇
  1996年   136篇
  1995年   121篇
  1994年   100篇
  1993年   97篇
  1992年   94篇
  1991年   100篇
  1990年   81篇
  1989年   87篇
  1988年   70篇
  1987年   58篇
  1986年   58篇
  1985年   91篇
  1984年   95篇
  1983年   55篇
  1982年   52篇
  1981年   40篇
  1980年   49篇
  1979年   19篇
  1978年   23篇
  1977年   14篇
  1976年   10篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
In order to investigate the mechanism of deposition of the complement membrane attack complex (MAC) in cardiomyocytes in areas of human myocardial infarction, the 20 kDA homologous restriction factor of complement (HRF20; CD59) and complement components (C1q, C3d and MAC) were analysed immunohistochemically using specific antibodies. Myocardial tissues obtained at autopsy from nine patients who died of acute myocardial infarction were fixed in acetone and embedded in paraffin. The ages of the infarcts ranged from about 3.5 h to 12 days. In cases of myocardial infarction of 20 h or less, MAC deposition was shown in the infarcted cardiomyocytes without loss of HRF20. Where the duration was 4 days or more, the cardiomyocytes with MAC deposition in the infarcted areas also showed complete loss of HRF20. Outside the infarcts, HRF20 in the cardiomyocytes was well preserved without MAC deposition. The present study suggests that the initial MAC deposition in dead cardiomyocytes can occur as a result of degradation of plasma-membrane by a mechanism independent of complement-mediated injury to the membrane. Loss of HRF20 from dead cardiomyocytes may not be the initial cause of MAC deposition, but may accelerate the deposition process of MAC in later stages of infarction.  相似文献   
102.
The present study quantifies electromyographic (EMG) magnitude, timing, and duration in one and two degree of freedom elbow movements involving combinations of flexion-extension and pronation-supination. The aim is to understand the organization of commands subserving motion in individual and multiple degrees of freedom. The muscles tested in this study fell into two categories with respect to agonist burst magnitude: those whose burst magnitude varied with motion in a second degree of freedom at the elbow, and those whose burst magnitude depended on motion in one degree of freedom only. In multiarticular muscles contributing to motion in two degrees of freedom at the elbow, we found that the magnitude of the agonist burst was greatest for movements in which a muscle acted as agonist in both degrees of freedom. The burst magnitudes for one degree of freedom movements were, in turn, greater than for movements in which the muscle was agonist in one degree of freedom and antagonist in the other. It was also found that, for movements in which a muscle acted as agonist in two degrees of freedom, the burst magnitude was, in the majority of cases, not different from the sum of the burst magnitudes in the component movements. When differences occurred, the burst magnitude for the combined movement was greater than the sum of the components. Other measures of EMG activity such as burst onset time and duration were not found to vary in a systematic manner with motion in these two degrees of freedom. It was also seen that several muscles which produced motion in one degree of freedom at the elbow, including triceps brachii (long head), triceps brachii (lateral head), and pronator quadratus displayed first agonist bursts whose magnitude did not vary with motion in a second degree of freedom. However, for the monoarticular elbow flexors brachialis and brachioradialis, agonist burst magnitude was affected by pronation or supination. Lastly, it was observed that during elbow movements in which muscles acted as agonist in one degree of freedom and antagonist in the other, the muscle activity often displayed both agonist and antagonist components in the same movement. It was found that, for pronator teres and biceps brachii, the timing of the bursts was such that there was activity in these muscles concurrent with activity in both pure agonists and pure antagonists. The empirical summation of EMG burst magnitudes and the presence in a single muscle of both agonist and antagonist bursts within a movement suggest that central commands associated with motion in individual degrees of freedom at the elbow may be superimposed to produce elbow movements in two degrees of freedom.  相似文献   
103.
 The aim of the current study was to elucidate the synergism of dietary calcium restriction and exhaustive exercise in the antioxidant enzyme system of rat soleus muscle, and to investigate the involvement of neutrophils in exercise-induced muscle damage. Forty-eight male Wistar rats were assigned to the following groups: control (C) or calcium-restricted [1 month (1 M) or 3 months (3 M)]. Each group was subdivided into acutely exercised or non-exercised groups. Soleus muscle from each rat was analysed to determine the levels of antioxidant enzymes [Mn-superoxide dismutase (SOD), Cu,Zn-SOD, glutathione peroxidase (GPX), and catalase (CAT)]. Dietary calcium restriction resulted in calcium deficiency and upregulated the antioxidant enzymes examined except GPX. Conversely, exhaustive exercise significantly decreased GPX and CAT, but not SODs activities in the calcium-restricted (1 M and/or 3 M) rats. Contents of immunoreactive Mn-SOD and Cu,Zn-SOD were only increased in the 3 M rats. During calcium restriction, the mRNA expression of both forms of SOD showed initial upregulation, followed by downregulation. Exhaustive exercise significantly increased the mRNA expressions only in the 3 M rats. Moreover, exhaustive exercise markedly increased myeloperoxidase activity in soleus muscles from the 1 M and 3 M rats compared with the C rats, and significantly enhanced the ability of neutrophils to generate superoxide in the 3 M rats. The results demonstrate that dietary calcium restriction upregulates certain antioxidant enzyme activities in rat soleus muscle, indicating an enhanced resistance to potential increases in intracellular reactive oxygen species. The results also suggest that exhaustive exercise may cause oxidative damage in soleus muscle of calcium-deficient rats through the activation of neutrophils. Received: 4 August 1997 / Received after revision: 29 September 1997 / Accepted: 26 November 1997  相似文献   
104.
Summary To determine the effects of atypical motion-related feedback on motor patterns of the paw shake, EMG patterns of selected flexor and extensor muscles were recorded under four conditions of joint immobilization (hip and ankle alone, hip-knee, hip-knee-ankle) and compared to responses evoked in the freely-moving hindlimb of the chronic-spinal cat. With only the ankle joint casted, paw shaking was easily evoked by applying tape to the paw, and cyclic characteristics were not altered. However, under the three conditions with hip-joint immobilization (hip alone, hip-knee, hip-knee-ankle), responses were difficult to obtain, and if elicited, the number of cycles within a response decreased and cycle periods were prolonged. The temporal organization of consecutive cycles, however, was not altered by immobilization of any joint(s). Ankle (LG) and hip (GM) extensor activity was relatively unaffected by conditions of joint immobilization. In contrast, hip flexor (IP) and knee extensor (VL) bursts were often absent under all three conditions of hip-joint immoblization, and if present, VL burst durations decreased under the casted hip-knee-ankle condition, while the onset of IP activity occurred early in the cycle with prolonged bursts under casted ankle and casted hip-knee-ankle conditions. The coactivity of the knee extensor (VL) and ankle flexor (TA) was disrupted by conditions of hip-joint immobilization: VL onset was dissociated from TA onset and coincident with LG onset. These results suggest that motion-related feedback from the hip joint is particularly important in the initiation, cycle frequency, and the number of cycles of paw-shake responses. The presence of atypical motion-dependent feedback from the hip joint altered activity of knee and ankle anterior muscles, while motion-dependent feedback from the ankle joint changed activity of the anterior hip muscle. Moreover, the results suggest a differential control of posterior and anterior muscles of the hindlimb, consistent with paw-shake limb dynamics.  相似文献   
105.
We describe a simple method for computer quantification of eye movement (EM) potentials during REM sleep. This method can be applied by investigators using either period-amplitude (PA) or Fast Fourier Transform (FFT) spectral EEG analysis without special hardware or computer programming. It provides good correlations with visual ratings of EM in baseline sleep and after administration of GABAergic hypnotics. We present baseline data for both PA and FFT measures for 16 normal subjects, studied for 5 consecutive nights. Both visually rated and computer-measured EM density (EMD) showed high night-to-night correlations across baseline and drug nights and the computer measures detected the EMD suppression that is produced by GABAergic drugs. Measurement of EM in addition to stage REM provides biologically significant information and application of this simple computer method, which does not require pattern recognition algorithms or special hardware, could provide reliable data that can be compared across laboratories.  相似文献   
106.
107.
Second-order vestibular neurons form the central links of the vestibulo-oculomotor three-neuron arcs that mediate compensatory eye movements. Most of the axons that provide for vertical vestibulo-ocular reflexes ascend in the medial longitudinal fasciculus (MLF) toward target neurons in the oculomotor and trochlear nuclei. We have now determined the morphology of individual excitatory second-order neurons of the anterior semicircular canal system that course outside the MLF to the oculomotor nucleus. The data were obtained by the intracellular horseradish peroxidase method. Cell somata of the extra-MLF anterior canal neurons were located in the superior vestibular nucleus. The main axon ascended through the deep reticular formation beneath the brachium conjunctivum to the rostral extent of the nucleus reticularis tegmenti pontis, where it crossed the midline. The main axon continued its trajectory to the caudal edge of the red nucleus from where it coursed back toward the oculomotor nucleus. Within the oculomotor nucleus, collaterals reached superior rectus and inferior oblique motoneurons. Some axon branches recrossed the midline within the oculomotor nucleus and reached the superior rectus motoneuron subdivision on that side. Since these neurons did not give off a collateral toward the spinal cord, they were classified as being of the vestibulo-oculomotor type and are thought to be involved exclusively in eye movement control. The signal content and spatial tuning characteristics of this anterior canal vestibulo-oculomotor neuron class remain to be determined.  相似文献   
108.
It is generally accepted that in cats smooth pursuit velocity of the eye never exceeds a few degrees per second. This is in contrast with observations in primates, where smooth pursuit velocity can reach values as high as 100°/s. Cats were trained to fixate and pursue spots of light appearing on a translucent screen. Spots were moved in the horizontal and vertical planes at different constant velocities up to 80°/s. Eye position was recorded with the sclerai search coil technique. Naive cats did not pursue moving targets with high efficiency. Smooth eye movement velocity saturated at 5°/s. After a few days of training, smooth-pursuit eye velocity increased with target velocity and saturated at 25°/s on average. However, velocities twice as high have been observed frequently. When the target was unexpectedly extinguished, smooth eye movement velocity dropped to values close to 0°/s in approximately 350 ms. After a short training period (usually 5 times the same target presentation), the eye continued to move smoothly until the target reappeared. These data suggest that smooth pursuit eye movements of the cat are qualitatively similar to those of primates, but reach lower velocities and are more variable in their characteristics.  相似文献   
109.
Calorie restriction (CR) extends the life span of various species through mechanisms that are as yet unclear. Recently, we have reported that mitochondrion-mediated apoptosis was enhanced in alphaMUPA transgenic mice that spontaneously eat less and live longer compared with their wild-type (WT) control mice. To understand the molecular mechanisms underlying the increased apoptosis, we compared alphaMUPA and WT mice for parameters associated with SOD2 (MnSOD), a mitochondrial antioxidant enzyme that converts superoxide radicals into H(2)O(2) and is also known to inhibit apoptosis. The SOD2-related parameters included the levels of SOD2 mRNA, immunoreactivity and enzymatic activity in the liver, lipid oxidation and aconitase activity in isolated liver mitochondria, and the sensitivity of the mice to paraquat, an agent that elicits oxidative stress. In addition, we compared the mice for the levels of SOD2 mRNA after treatment with bacterial lipopolysaccharides (LPS), and for the DNA binding activity of NFkappaB as a marker for the inflammatory state. We extended SOD2 determination to the colon, where we also examined the formation of pre-neoplastic aberrant crypt foci (ACF) following treatment with dimethylhydrazine (DMH), a colonic organotypic carcinogen. Overall, alphaMUPA mice showed reduced basal levels of SOD2 gene expression and activity concomitantly with reduced lipid oxidation, increased aconitase activity and enhanced paraquat sensitivity, while maintaining the capacity to produce high levels of SOD2 in response to the inflammatory stimulus. alphaMUPA mice also showed increased resistance to DMH-induced pre-neoplasia. Collectively, these data are consistent with a model, in which an optimal fine-tuning of SOD2 throughout a long-term regimen of reduced eating could contribute to longevity, at least in the alphaMUPA mice.  相似文献   
110.
Cataplexy is usually seen as rapid eye movement (REM) sleep atonia occurring at an inopportune moment. REM sleep atonia is the result of postsynaptic inhibition, i.e. inhibition of alpha motor neurones. Although this may explain the suppression of H-reflexes during REM sleep, cataplexy and laughter, it is not the only explanation. Presynaptic inhibition, in which afferent impulses are prevented from reaching motor neurones, is an alternative. Testing H-reflexes and magnetic-evoked potentials (MEPs) helps to tell them apart: in postsynaptic inhibition MEPs and H-reflexes change in tandem, while H-reflexes may decrease independent of MEPs with other inhibition modes. We studied motor inhibition during laughter, the strongest trigger for cataplexy. H-reflexes were evoked every 2 s in the soleus muscle in 10 healthy subjects watching comical video fragments. MEPs were evoked when H-reflexes decreased during laughter, and, as a control, when subjects did not laugh. Pairs of MEPs and the immediately preceding H-reflexes were studied. Compared with the control condition, laughter caused mean MEP area to increase by 60% (P=0.006) and mean H-reflex amplitude to decrease by 33% (P=0.008). This pattern proves that postsynaptic inhibition cannot have been the sole influence. The findings do not prove which mechanisms are involved; one possibility is that the decrease in H-reflex amplitude was the result of presynaptic inhibition, and that cortical and/or spinal facilitation accounted for increased MEPs. Regardless, the pattern differs fundamentally from the reported mechanism of REM sleep atonia. Existing scanty data on cataplexy suggest a pattern of H-reflexes and MEPs similar to that during laughter, but this needs further study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号