首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102559篇
  免费   10158篇
  国内免费   5983篇
耳鼻咽喉   782篇
儿科学   889篇
妇产科学   1369篇
基础医学   28697篇
口腔科学   3196篇
临床医学   6704篇
内科学   13927篇
皮肤病学   1952篇
神经病学   7819篇
特种医学   1963篇
外国民族医学   23篇
外科学   8350篇
综合类   15349篇
现状与发展   21篇
一般理论   2篇
预防医学   2838篇
眼科学   2811篇
药学   10266篇
  15篇
中国医学   3126篇
肿瘤学   8601篇
  2024年   161篇
  2023年   1142篇
  2022年   2178篇
  2021年   3099篇
  2020年   3035篇
  2019年   2654篇
  2018年   2777篇
  2017年   3277篇
  2016年   3784篇
  2015年   4272篇
  2014年   6463篇
  2013年   8075篇
  2012年   6251篇
  2011年   7258篇
  2010年   5890篇
  2009年   5647篇
  2008年   5933篇
  2007年   5891篇
  2006年   5423篇
  2005年   4659篇
  2004年   3936篇
  2003年   3204篇
  2002年   2435篇
  2001年   2066篇
  2000年   1779篇
  1999年   1542篇
  1998年   1450篇
  1997年   1359篇
  1996年   1229篇
  1995年   1280篇
  1994年   1143篇
  1993年   998篇
  1992年   817篇
  1991年   779篇
  1990年   661篇
  1989年   660篇
  1988年   555篇
  1987年   511篇
  1986年   439篇
  1985年   673篇
  1984年   597篇
  1983年   422篇
  1982年   525篇
  1981年   400篇
  1980年   339篇
  1979年   300篇
  1978年   205篇
  1977年   156篇
  1976年   144篇
  1975年   54篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
To determine the protective effect of aloe-emodin (AE) from high glucose induced toxicity in RIN-5F (pancreatic β-cell) cell and restoration of its function was analyzed. RIN-5F cells have been cultured in high glucose (25 mM glucose) condition, with and without AE treatment. RIN-5F cells cultured in high glucose decreased cell viability and increased ROS levels after 48 hr compared with standard medium (5.5 mM glucose). Glucotoxicity was confirmed by significantly increased ROS production, increased pro-inflammatory (IFN-γ, IL-1β,) & decreased anti-inflammatory (IL-6&IL-10) cytokine levels, increased DNA fragmentation. In addition, we found increased Bax, caspase 3, Fadd, and Fas and significantly reduced Bcl-2 expression after 48 hr. RIN-5F treated with both high glucose and AE (20 μM) decreased ROS generation and prevent RIN-5F cell from glucotoxicity. In addition, AE treated cells cultured in high glucose were transferred to standard medium, normal responsiveness to glucose was restored within 8hr and normal basal insulin release within 24 hr was achieved when compared to high glucose.  相似文献   
22.
Understanding the contribution of endothelial cells to the progenitor pools of adult tissues has the potential to inform therapies for human disease.To address whether endothelial cells transdifferentiate into non-vascular cell types,we performed cell lineage tracing analysis using transgenic mice engineered to express a fluorescent marker following activation by tamoxifen in vascular endothelial cadherin promoter-expressing cells(VEcad-CreERT2;B6 Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze).Activation of target-cell labeling following 1.5 months of ad libitum feeding with tamoxifen-laden chow in 4–5 month-old mice resulted in the tracing of central nervous system and peripheral cells that include:cerebellar granule neurons,ependymal cells,skeletal myocytes,pancreatic beta cells,pancreatic acinar cells,tubular cells in the renal cortex,duodenal crypt cells,ileal crypt cells,and hair follicle stem cells.As Nestin expression has been reported in a subset of endothelial cells,Nes-CreERT2 mice were also utilized in these conditions.The tracing of cells in adult Nes-CreERT2 mice revealed the labeling of canonical progeny cell types such as hippocampal and olfactory granule neurons as well as ependymal cells.Interestingly,Nestin tracing also labeled skeletal myocytes,ileal crypt cells,and sparsely marked cerebellar granule neurons.Our findings provide support for endothelial cells as active contributors to adult tissue progenitor pools.This information could be of particular significance for the intravenous delivery of therapeutics to downstream endothelial-derived cellular targets.The animal experiments were approved by the Boise State University Institute Animal Care and Use Committee(approval No.006-AC15-018)on October 31,2018.  相似文献   
23.
24.
The developing CNS is exposed to physiological hypoxia, under which hypoxia-inducible factor α (HIFα) is stabilized and plays a crucial role in regulating neural development. The cellular and molecular mechanisms of HIFα in developmental myelination remain incompletely understood. A previous concept proposes that HIFα regulates CNS developmental myelination by activating the autocrine Wnt/β-catenin signaling in oligodendrocyte progenitor cells (OPCs). Here, by analyzing a battery of genetic mice of both sexes, we presented in vivo evidence supporting an alternative understanding of oligodendroglial HIFα-regulated developmental myelination. At the cellular level, we found that HIFα was required for developmental myelination by transiently controlling upstream OPC differentiation but not downstream oligodendrocyte maturation and that HIFα dysregulation in OPCs but not oligodendrocytes disturbed normal developmental myelination. We demonstrated that HIFα played a minor, if any, role in regulating canonical Wnt signaling in the oligodendroglial lineage or in the CNS. At the molecular level, blocking autocrine Wnt signaling did not affect HIFα-regulated OPC differentiation and myelination. We further identified HIFα–Sox9 regulatory axis as an underlying molecular mechanism in HIFα-regulated OPC differentiation. Our findings support a concept shift in our mechanistic understanding of HIFα-regulated CNS myelination from the previous Wnt-dependent view to a Wnt-independent one and unveil a previously unappreciated HIFα–Sox9 pathway in regulating OPC differentiation.SIGNIFICANCE STATEMENT Promoting disturbed developmental myelination is a promising option in treating diffuse white matter injury, previously called periventricular leukomalacia, a major form of brain injury affecting premature infants. In the developing CNS, hypoxia-inducible factor α (HIFα) is a key regulator that adapts neural cells to physiological and pathologic hypoxic cues. The role and mechanism of HIFα in oligodendroglial myelination, which is severely disturbed in preterm infants affected with diffuse white matter injury, is incompletely understood. Our findings presented here represent a concept shift in our mechanistic understanding of HIFα-regulated developmental myelination and suggest the potential of intervening with an oligodendroglial HIFα-mediated signaling pathway to mitigate disturbed myelination in premature white matter injury.  相似文献   
25.
《Vaccine》2020,38(33):5337-5342
Freezing of alum-based vaccines drastically alters their colloidal composition and leads to irreversible cluster formation. The loss of stability is well described, but the impact of frost damage on the functionality of the induced and secreted antibody repertoire has not been studied in detail. We therefore applied our single-cell measurement platform to extract the frequencies of Immunoglobulin G-secreting cells in combination with individual secretion rates and affinities. We showed that, frost-damaged or not, the tested vaccine was able to generate similar frequencies of total and antigen-affine IgG-secreting cells. Additionally, the frost-damaged vaccine stimulated a similar T-cell cytokine secretion pattern when compared to the regularly stored vaccine. However, frost-damaged vaccines induced no efficient affinity maturation and a complete collapse of the affinity distribution was observed. This study unveiled the impact of frost-damage to alum-based vaccines on the induced secreted antibody repertoire, and illustrated the power of functional single-antibody analysis.  相似文献   
26.
Abstract

Oxidative stress (OS) has been proposed to play a role in the development of EMs. Peroxiredoxins are a family of antioxidant proteins that exhibit peroxidase activity in a thioredoxin-dependent manner, protecting cells against OS. The Western blotting results showed that the relative expression of PRDX4 was significantly increased in ectopic endometria compared with the normal endometria of EMs-free (p?<?.05). The H2O2 concentration was also significantly higher in the ectopic endometrium. PRDX4 siRNA was transfected into primary ectopic endometrial stromal cells (EESCs). The viability of the transfected EESCs was measured by CCK-8 assay, and the results showed significantly decreased cell viability. Furthermore, the apoptosis rate and ROS generation in flow cytometry assays were significantly increased after the knockdown of PRDX4 expression (p?<?.05). Scratch assays and transwell assays revealed that decreased expression of PRDX4 mediated by siRNA inhibited EESC migration and invasion. In conclusion, these findings indicate the potential role of PRDX4 in the development of EMs and PRDX4 as a possible therapeutic target for EMs treatment.  相似文献   
27.
28.
INTRODUCTIONThis study aimed to investigate the therapeutic response to injected human umbilical cord blood mesenchymal stem cells (UCBMSCs) among albino rats with streptozotocin (STZ)-induced diabetes mellitus.METHODSControl group (GI; n = 25) rats were fed with standard rat diet. Rats with STZ-induced diabetes mellitus without (GII; n = 25) and with (GIII; n = 25) differentiated human UCBMSCs implantation were the test groups. Rats were sacrificed in Week 11 following implantation. Liver biopsies were sectioned and stained in order to highlight both the presence and function of impregnated cells in the liver tissue.RESULTSHaematoxylin and eosin-stained sections in GI and GII rats showed normal liver architecture while GIII rats showed presence of cell clusters inside the liver tissue and around the central veins. Cell clusters with blue cytoplasm were present in sections in GIII rats but absent in GI and GII rats, indicating the presence of injected differentiated human UCBMSCs. The anti-human insulin immunostaining of GIII rats showed clusters of cells within the liver parenchyma and around central veins, indicating that these cells were active and secreting insulin.CONCLUSIONUCBMSCs are proficient in differentiating into insulin-producing cells in vivo under specific conditions and, when transplanted into the liver of albino rats with STZ-induced diabetes mellitus, were able to secrete insulin and partially control the status of diabetes mellitus in rats.  相似文献   
29.
Metastatic melanoma is the most deadly skin neoplasm in the United States. Outcomes for this lethal disease have improved dramatically due to the use of both targeted and immunostimulatory drugs. Immunogenic cell death (ICD) has emerged as another approach for initiating antitumor immunity. ICD is triggered by tumor cells that display damage-associated molecular patterns (DAMPs). These DAMP molecules recruit and activate dendritic cells (DCs) that present tumor-specific antigens to T cells which eliminate neoplastic cells. Interestingly, the expression of DAMP molecules occurs in an endoplasmic reticulum (ER) stress-dependent manner. We have previously shown that ER stress was required for the cytotoxic activity of the endocannabinoid metabolite, 15-deoxy, Δ12,14 prostamide J2 (15dPMJ2). As such, the current study investigates whether 15dPMJ2 induces DAMP signaling in melanoma. In B16F10 cells, 15dPMJ2 caused a significant increase in the cell surface expression of calreticulin (CRT), the release of ATP and the secretion of high-mobility group box 1 (HMGB1), three molecules that serve as surrogate markers of ICD. 15dPMJ2 also stimulated the cell surface expression of the DAMP molecules, heat shock protein 70 (Hsp70) and Hsp90. In addition, the display of CRT and ATP was increased by 15dPMJ2 to a greater extent in tumorigenic compared to non-tumorigenic melanocytes. Consistent with this finding, the activation of bone marrow-derived DCs was upregulated in co-cultures with 15dPMJ2-treated tumor compared to non-tumor melanocytes. Moreover, 15dPMJ2-mediated DAMP exposure and DC activation required the electrophilic cyclopentenone double bond within the structure of 15dPMJ2 and the ER stress pathway. These results demonstrate that 15dPMJ2 is a tumor-selective inducer of DAMP signaling in melanoma.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号