首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   873篇
  免费   78篇
  国内免费   45篇
耳鼻咽喉   4篇
儿科学   1篇
妇产科学   2篇
基础医学   116篇
口腔科学   33篇
临床医学   73篇
内科学   32篇
皮肤病学   2篇
神经病学   21篇
特种医学   17篇
外科学   59篇
综合类   72篇
预防医学   34篇
眼科学   8篇
药学   469篇
中国医学   39篇
肿瘤学   14篇
  2023年   6篇
  2022年   21篇
  2021年   28篇
  2020年   20篇
  2019年   30篇
  2018年   42篇
  2017年   38篇
  2016年   49篇
  2015年   39篇
  2014年   59篇
  2013年   186篇
  2012年   50篇
  2011年   69篇
  2010年   32篇
  2009年   57篇
  2008年   54篇
  2007年   61篇
  2006年   43篇
  2005年   25篇
  2004年   24篇
  2003年   18篇
  2002年   10篇
  2001年   5篇
  2000年   11篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1988年   1篇
排序方式: 共有996条查询结果,搜索用时 15 毫秒
41.
Vulvovaginal candidiasis is an inflammation localized in the vulvovaginal area. It is mostly caused by Candida albicans. Its treatment is based on the systemic and local administration of antifungal drugs. However, this conventional therapy can fail owing to the resistance of the Candida species and noncompliance of patients. Amphotericin B-loaded poly(lactic-co-glycolic acid) nanofibers are single-use, antifungal, controlled drug delivery systems, and represent an alternative therapeutic scheme for the local treatment of vulvovaginal candidiasis. Nanofibers were characterized by analytical techniques and with an in vitro drug delivery study. In vitro and in vivo fungicidal activity of amphotericin B released from nanofibers was evaluated using the agar diffusion method and an experimental murine model of vulvovaginal candidiasis, respectively. Analytical techniques showed that amphotericin B was physically mixed in the polymeric nanofibers. Nanofibers controlled the delivery of therapeutic doses of amphotericin B for 8 consecutive days, providing effective in vitro antifungal activity and eliminated the in vivo vaginal fungal burden after 3 days of treatment and with only one local application. Amphotericin B-loaded poly(lactic-co-glycolic acid) nanofibers could be potentially applied as an alternative strategy for the local treatment of vulvovaginal candidiasis without inducing fungal resistance, yet ensuring patient compliance.  相似文献   
42.
It is important to address the periodontitis-associated bacteria in the residual subgingival plaque after scaling and root planing to successfully treat periodontitis. In this study, we explored the possibility of exploiting the ion pairing/complexation of minocycline, Ca2+, and sulfate/sulfonate-bearing biopolymers to develop an intrapocket delivery system of minocycline as an adjunct to scaling and root planing. Minocycline-calcium-dextran sulfate complex microparticles were synthesized from minocycline, CaCl2, and dextran sulfate. They were characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. An in vitro release study was conducted to evaluate the release kinetics of minocycline from these microparticles. Agar disk diffusion assays and biofilm-grown bacteria assays were used to assess antibacterial capability. High loading efficiency (96.98% ± 0.12%) and high loading content (44.69% ± 0.03%) for minocycline were observed for these complex microparticles. Mino-Ca-DS microparticles achieved sustained release of minocycline for at least 9 days at pH 7.4 and 18 days at pH 6.4 in phosphate-buffered saline, respectively. They also demonstrated potent antimicrobial effects against Streptococcus mutans and Aggregatibacter actinomycetemcomitans in agar disk diffusion and biofilm assays. These results suggested that the ion pairing/complexation of minocycline, Ca2+, and sulfonate/sulfate-bearing biopolymers can be exploited to develop complex microparticles as local delivery systems for periodontitis treatment.  相似文献   
43.
The bioavailability of poorly-water-soluble active pharmaceutical ingredients (APIs) can be significantly improved by so-called amorphous solid dispersions (ASDs). However, the long-term stability of ASDs might be impaired by API recrystallization and/or amorphous phase separation (APS). So far, no methods have been reported to quantify APS in ASDs. In this work, phase-separation kinetics as well as the compositions of the two amorphous phases evolving due to APS were quantitatively determined for the first time using confocal Raman spectroscopy. Raman spectra were evaluated via non-linear multivariate Indirect Hard Modeling and verified by differential scanning calorimetry and hot-stage microscopy. APS in water-free ASDs of ibuprofen and poly (DL-lactic-co-glycolic acid) was investigated considering the influence of temperature and polymer architecture (linear vs. star-shaped). Water absorbed at 40?°C and 75% relative humidity (RH) promotes APS which was quantified for formulations of felodipine/poly(vinyl pyrrolidone) and ibuprofen/poly(vinyl pyrrolidone).  相似文献   
44.
Here, we aimed to develop protein loaded microspheres (MSs) using penta-block PLGA-based copolymers to obtain sustained and complete protein release. We varied MS morphology and studied the control of protein release. Lysozyme was used as a model protein and MSs were prepared using the solid-in-oil-in-water emulsion solvent extraction method. We synthesized and studied various penta-block PLGA-based copolymers. Copolymer characteristics (LA/GA ratio and molecular weight of PLGA blocks) influenced MS morphology. MS porosity was influenced by process parameters (such as solvent type, polymer concentration, emulsifying speed), whereas the aqueous volume for extraction and stabilizer did not have a significant effect. MSs of the same size, but different morphologies, exhibited different protein release behavior, with porous structures being essential for the continuous and complete release of encapsulated protein. These findings suggest strategies to engineer the morphology of MSs produced from PLGA-based multi-block copolymers to achieve appropriate release rates for a protein delivery system.  相似文献   
45.
Resveratrol (RL), a natural polyphenol, is known for its diverse biological effects against various human cancer cell lines. But low aqueous solubility, poor bioavailability, and stability limit its efficacy against prostate cancer. In this study polymeric nanoparticles encapsulating resveratrol (RLPLGA) were designed and their cytotoxic and mode of apoptotic cells death against prostate cancer cell line (LNCaP) was determined. Nanoparticles were prepared by solvent displacement method and characterized for particle size, TEM, entrapment efficiency, DSC and drug release study. RLPLGA exhibited a significant decrease in cell viability with 50% and 90% inhibitory concentration (IC50 and IC90) of 15.6?±?1.49 and 41.1?±?2.19?μM respectively against the LNCaP cells. This effect was mediated by apoptosis as confirmed by cell cycle arrest at G1-S transition phase, externalization of phosphatidylserine, DNA nicking, loss of mitochondrial membrane potential and reactive oxygen species generation in LNCaP cells. Furthermore, significantly greater cytotoxicity to LNCaP cells was observed with nanoparticles as compared to that of free RL at all tested concentrations. RLPLGA nanoparticles presented no adverse cytotoxic effects on murine macrophages even at 200?μM. Our findings support the potential use of developed resveratrol loaded nanoparticle for the prostate cancer chemoprevention/ chemotherapy with no adverse effect on normal cells.  相似文献   
46.
Over the recent couple of decades, pharmaceutical field has embarked most phenomenal noteworthy achievements in the field of medications as well as drug delivery. The rise of Nanotechnology in this field has reformed the existing drug delivery for targeting, diagnostic, remedial applications and patient monitoring. The convincing usage of nanotechnology in the conveyance of medications that prompts an extension of novel lipid-based nanocarriers and non-liposomal systems has been discussed. Present review deals with the late advances and updates in lipidic nanocarriers, their formulation strategies, challenging aspects, stability profile, clinical applications alongside commercially available products and products under clinical trials. This exploration may give a complete idea viewing the lipid based nanocarriers as a promising choice for the formulation of pharmaceutical products, the challenges looked by the translational process of lipid-based nanocarriers and the combating methodologies to guarantee the headway of these nanocarriers from bench to bedside.  相似文献   
47.
Umbilical cord blood (CB) can be used as an alternative source of hematopoietic stem cells (HSCs) for transplantation in hematological and non-hematological disorders. Despite several recognized advantages the limited cell number in CB one unit still restricts its clinical use. The success of transplantation greatly depends on the levels of total nucleated cell and CD34+ cell counts. Thus, many ex vivo strategies have been developed within the last decade in order to solve this obstacle, with more or less success, mainly determined by the degree of difficulty related with maintaining HSCs self-renewal and stemness properties after long-term expansion. Different research groups have developed very promising and diverse CB-derived HSC expansion strategies using nanofiber scaffolds. Here we review the state-of-the-art of nanofiber technology-based CB-derived HSC expansion.  相似文献   
48.
目的 利用泊洛沙姆188对PLGA进行化学修饰,制备包载阿霉素的纳米粒,并评价纳米粒在人耐药乳腺癌细胞中的摄取能力及毒性。方法 通过EDC/NHS法合成泊洛沙姆188-PLGA,通过核磁共振对其结构进行表征并测定临界胶束浓度;通过纳米沉淀法制备包载阿霉素的纳米粒,通过粒度仪对纳米粒的粒径及分布进行分析,通过细胞摄取实验及细胞毒性实验对纳米粒的摄取效果及毒性进行评价。结果 成功合成了泊洛沙姆188-PLGA,并制备了粒径在140 nm左右的纳米粒,该纳米粒在人耐药乳腺癌细胞中有较好的摄取效果及较强的毒性。结论 泊洛沙姆188能够逆转耐药,增强耐药细胞对化疗药物的敏感程度。  相似文献   
49.

Background

Nanotechnology has received great attention since a decade for the treatment of different varieties of cancer. However, there is a limited data available on the cytotoxic potential of Temozolomide (TMZ) formulations. In the current research work, an attempt has been made to understand the anti-metastatic effect of the drug after loading into PLGA nanoparticles against C6 glioma cells.Nanoparticles were prepared using solvent diffusion method and were characterized for size and morphology. Diffusion of the drug from the nanoparticles was studied by dialysis method. The designed nanoparticles were also assessed for cellular uptake using confocal microscopy and flow cytometry.

Results

PLGA nanoparticles caused a sustained release of the drug and showed a higher cellular uptake. The drug formulations also affected the cellular proliferation and motility.

Conclusion

PLGA coated nanoparticles prolong the activity of the loaded drug while retaining the anti-metastatic activity.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号