首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   767篇
  免费   9篇
  国内免费   1篇
儿科学   1篇
妇产科学   1篇
基础医学   43篇
口腔科学   6篇
临床医学   29篇
内科学   20篇
皮肤病学   2篇
神经病学   188篇
特种医学   25篇
外科学   4篇
综合类   25篇
预防医学   32篇
眼科学   1篇
药学   396篇
中国医学   3篇
肿瘤学   1篇
  2023年   4篇
  2022年   13篇
  2021年   15篇
  2020年   16篇
  2019年   14篇
  2018年   8篇
  2017年   16篇
  2016年   21篇
  2015年   11篇
  2014年   34篇
  2013年   67篇
  2012年   31篇
  2011年   52篇
  2010年   25篇
  2009年   49篇
  2008年   58篇
  2007年   41篇
  2006年   32篇
  2005年   25篇
  2004年   15篇
  2003年   15篇
  2002年   11篇
  2001年   15篇
  2000年   13篇
  1999年   16篇
  1998年   11篇
  1997年   11篇
  1996年   12篇
  1995年   10篇
  1994年   8篇
  1993年   9篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1987年   6篇
  1986年   4篇
  1985年   8篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   8篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   4篇
  1974年   8篇
  1973年   6篇
  1972年   3篇
排序方式: 共有777条查询结果,搜索用时 15 毫秒
31.
Rats were treated with a high-dose methamphetamine (METH) regimen (40 mg/kg/injection, four times at 2-h intervals) or a saline regimen (four injections at 2-h intervals). Temperature related measures taken during the high-dose METH treatment were maximum core temperature and minimum chamber temperature. Fourteen rats (METH N=7; Saline N=7) were implanted with in-vivo dialysis probes 4-7 weeks post-regimen (average=6 weeks). The next day, they received a challenge dose of METH (4.0 mg/kg) and dopamine release was measured. Results showed a significant decrease in challenge-induced dopamine release in rats previously treated with the high-dose METH regimen. These findings demonstrate a functional deficit in the dopamine system 6 weeks after high-dose METH treatment. Temperature-related measures taken during the high-dose regimen were not correlated with METH-induced dopamine release 6 weeks later. An additional group of rats were sacrificed 6 weeks after the high-dose regimen (METH N=12; Saline N=10), and their brains was analyzed for dopamine and serotonin concentrations. Tissue concentrations of dopamine were significantly depleted in striatum and nucleus accumbens/olfactory tubercle, but not septum, hypothalamus, or ventral mid-brain 6 weeks after the high-dose regimen. Tissue concentrations of serotonin were also significantly depleted in striatum, nucleus accumbens/olfactory tubercle, hippocampus, somatosensory cortex, but not septum, hypothalamus or ventral mid-brain. Significant correlations between the temperature-related measures and post-mortem neurotransmitter tissue concentrations were region and transmitter dependent.  相似文献   
32.
Repeated administration of methamphetamine (METH) results in damage to nigrostriatal dopaminergic neurons. Both competitiveN-methyl-d-aspartate (NMDA) receptor antagonists and use-dependent cation channel blockers attenuate METH-induced damage. The objectives of the present study were to examine whether comparable reductions in METH-induced damage could be obtained by compounds acting at strychnine-insensitive glycine receptors on the NMDA receptor complex. Four injections of METH (5 mg/kg i.p.) resulted in a 70.9% depletion of striatal dopamine (DA) and 62.7% depletion of dihydroxyphenylacetic acid (DOPAC) content, respectively. A significant protection against METH-induced DA and DOPAC depletion was afforded by the use-dependent channel blocker, MK-801. The competitive glycine antagonist 7-chlorokynurenic acid (7-Cl-KA), the low efficacy glycine partial agonist (+)-3-amino-1-hydroxy-2-pyrrolidone ((+)-HA-966), and the high efficacy partial glycine agonist 1-aminocyclopropane-car☐ylic acid (ACPC) were ineffective against METH-induced toxicity despite their abilities to attenuate glutamate-induced neurotoxicity under both in vivo and in vitro conditions. These results indicate that glycinergic ligands do not possess the same broad neuroprotective spectrum as other classes of NMDA antagonists.  相似文献   
33.
Rats were trained through a series of discrimination reversals until they developed a stable, repeated acquisition baseline. Methamphetamine (0.5 mg/kg) accelerated acquisition measured from this baseline. The drug effect was demonstrated with successive cumulative records and with a graphic method using a distribution of error scores to develop a baseline. Generally, with low doses(0.25–0.50), methamphetamine reduced errors without affecting rewarded responding. This effect is dose dependent, although at 1.0 mg/kg the drug may disrupt operant behavior.Experiments I and II were conducted while the author was an NSF Science Faculty Fellow at Indiana University. Facilities were provided by the Psychopharmacology Laboratory supported by USPHS Grant MH-14658 to Dr. G. A. Heise. Experiment III was conducted at the University of Tennessee.  相似文献   
34.
Dose response functions for d-methamphetamine (MA), physostigmine, atropine, and mecamylamine on force lever performance (a measure of motor control) were determined in three rhesus monkeys. The rhesus monkeys were then treated with a repeated high dose regimen of MA, and the effects of the four drugs were redetermined. Following the completion of the behavioral studies, the monkeys were killed and brain monoamine concentrations were measured. It was found that each of the four drugs produced differential effects on force lever performance indices. Following the MA regimen, the MA-treated monkeys were less sensitive to the effects of MA on force lever performance but showed no change in sensitivity to any of the cholinergic agents. The monkeys were subsequently shown to have decreased brain dopamine and serotonin levels.  相似文献   
35.
The translational value of preclinical models of methamphetamine abuse depends in large part on the degree to which the drug regimens used in animals produce methamphetamine exposure patterns similar to those experienced by human methamphetamine abusers. To approximate one common form of methamphetamine abuse, we studied the effects of a schedule of intravenous methamphetamine administration in rats which included 2 weeks of progressively more frequent drug injections (0.125 mg/kg/injection) followed by 40 maintenance days during which animals received 40 daily injections (at 15-min intervals), with the dose gradually increasing (0.125–0.25 mg/kg per injection) every 5–10 days. This treatment produced an emerging behavioral profile characterized by gradually more continuous periods of activation consisting of progressively more intense, focused stereotypy interrupted by episodic bursts of locomotion. We also assessed markers of dopamine neurotransmission (dopamine transporter, vesicular monoamine transporter, and dopamine D1 and D2 receptors) at 15 min and (including dopamine levels) at 6 and 30 days following cessation of methamphetamine treatment. All dopamine components measured in caudate–putamen were significantly reduced at 15 min and 6 days after the final methamphetamine injection. Dopamine D1 and D2 receptors fully recovered after 30 days of drug abstinence, whereas dopamine and the dopamine transporter exhibited significant but incomplete recovery by this time point. In contrast, only the vesicular monoamine transporter exhibited no evidence of recovery over the 30-day withdrawal period. These data are discussed in terms of damage to dopamine terminals and compensatory adjustments in mechanisms maintaining functional dopaminergic transmission.  相似文献   
36.
Rationale Sigma1 receptors (Sig-1R) are implicated in behavioral sensitization, conditioned place preference, and cellular restructuring induced by psychostimulants. We previously reported that rats which actively self-administered methamphetamine for 5 weeks and were then withdrawn from methamphetamine for 24 h showed downregulation of dopamine D2 autoreceptors (approximately 30%) in the midbrain and this was not seen in rats that passively received injections of methamphetamine or saline at the same time (yoked controls). Involvement of Sig-1R in the self-administration of psychostimulants, however, has never been reported.Objectives This study examined neuroadaptive changes in Sig-1R in the brains of rats self-administering methamphetamine.Methods Three groups of rats were tested simultaneously 5 days per week, for 5 weeks (25 daily sessions). Two groups served as yoked controls and passively received an injection of either 0.1 mg/kg methamphetamine or saline (not contingent on responding) each time a response-contingent injection of 0.1 mg/kg methamphetamine was actively self-administered by the first group of rats. Protein and mRNA levels of Sig-1R were then measured by Western and Northern blottings, respectively.Results There was a marked upregulation of Sig-1R proteins (50%) in the midbrain and altered levels of Sig-1R mRNA in the frontal cortex and hippocampus of rats that learned to actively self-administer methamphetamine, but not in yoked methamphetamine- or saline-control rats.Conclusions Neuroadaptive increases in Sig-1R seen in this study may contribute to the reinforcing effects of methamphetamine. This upregulation of Sig-1R may be mediated by increased protein kinase A activity due to downregulation of dopamine D2 autoreceptors.R.S., Z.J., T.H. and M.T. contributed equally to this work  相似文献   
37.
The neurotoxic action of the abuse drugs methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) on cerebellar granule neurones (CGNs) culture was examined. Treatment for 48 h with METH or MDMA (1-5 mM) induced a higher decrease in viability than 24 h treatment. z.VAD.fmk (100 microM) but not MK-801 nor NBQX recovered control viability values. In both cases, cell death was characterised as apoptotic rather than necrotic by morphology cell observation. Apoptosis measured by flow cytometry indicated an increase in the hypodiploid population after 48 h treatment with METH and MDMA. Apoptosis was reverted by the presence of z.VAD.fmk (100 microM) but not by 10 microM MK-801 or NBQX. Similar results were obtained by analysing nuclear chromatine condensation. These results ruled out excitotoxic participation in amphetamine derivative-induced neurotoxicity in CGNs. Participation of radical oxygen species (ROS) was evaluated using alpha-tocopherol (1-15 microM) and cytometric studies. The co-treatment with 4 mM METH or MDMA for 48 h partially reverted neurotoxic action and apoptotic features, indicating ROS implication in CGNs death by amphetamine derivatives. Alteration of mitochondrial function induced cytochrome C (Cyt C) release after 48-h treatment with METH and MDMA (4 mM). There was also indication of caspase-3-like activation, measured by immunoanalysis and biochemically. Finally, neurodegenerative action caused by amphetamine derivatives may be prevented by using caspase inhibitors.  相似文献   
38.
The present study was aimed to clarify the role of the opioid system in the reinstatement of methamphetamine (METH)-seeking behavior in METH self-administering rats. Following 12 days of self-administration of METH, the replacement of METH with saline resulted in a gradual decrease in lever press responses (extinction). Under extinction conditions, METH-priming or re-exposure to cues previously paired with METH infusion markedly increased the responses (reinstatement of drug-seeking). Naltrexone administered 30 min before re-exposure to METH-associated cues attenuated reinstatement of drug-seeking behavior. On the other hand, administration of this antagonist had no effect on the reinstatement induced by METH-priming. We discussed these findings in relation with the dissociation of primary and secondary reward, suggesting that an opioid mechanism is responsible for this dissociation. Further, these results indicate the possibility of using naltrexone as an anti-relapse agent.  相似文献   
39.
Previous studies have demonstrated methamphetamine (METH)-induced toxicity to dopaminergic and serotonergic axons in rat striatum. Although several studies have identified the nature of reactive astrogliosis in this lesion model, the response of microglia has not been examined in detail. In this investigation, we characterized the temporal relationship of reactive microgliosis to neuropathological alterations of dopaminergic axons in striatum following exposure to methamphetamine. Adult male Sprague-Dawley rats were administered a neurotoxic regimen of methamphetamine and survived 12 h, or 1, 2, 4, and 6 days after treatment. Immunohistochemical methods were used to evaluate reactive changes in microglia throughout the brain of methamphetamine-treated rats, with a particular focus upon striatum. Pronounced morphological changes, indicative of reactive microgliosis, were evident in the brains of all methamphetamine-treated animals and were absent in saline-treated control animals. These included hyperplastic changes in cell morphology that substantially increased the size and staining intensity of reactive microglia. Quantitative analysis of reactive microglial changes in striatum demonstrated that these changes were most robust within the ventrolateral region and were maximal 2 days after methamphetamine administration. Analysis of tissue also revealed that microglial activation preceded the appearance of pathological changes in striatal dopamine fibers. Reactive microgliosis was also observed in extra-striatal regions (somatosensory and piriform cortices, and periaqueductal gray). These data demonstrate a consistent, robust, and selective activation of microglia in response to methamphetamine administration that, at least in striatum, precedes the appearance of morphological indicators of axon pathology. These observations raise the possibility that activated microglia may contribute to methamphetamine-induced neurotoxicity.  相似文献   
40.
The effect of catechol-O-methyltransferase (COMT) deficiency on methamphetamine-induced hydroxyl radical production in the brain was assessed by the salicylate trapping method. Methamphetamine-induced hyperthermia was also studied. Furthermore, the effect of COMT deficiency on the activities of glutathione S-transferase, quinone reductase and liver mono-oxygenases was assessed with and without l-dopa challenge. Finally, two alternative pathways of l-dopa metabolism were evaluated. Methamphetamine increased 2,3-dihydroxybenzoic acid levels only slightly (n.s.) at the lowest dose level (2.5 mg/kg × 4 i.p.). This was accompanied by a simultaneous increase in salicylate levels so that the 2,3-dihydroxybenzoic acid/salicylate ratio decreased correspondingly. Most importantly, no COMT genotype-dependent changes were observed. However, hyperthermia was induced even at the lowest methamphetamine dose, the COMT-deficient mice being most sensitive. COMT deficiency did not significantly change the activities of liver glutathione S-transferase, quinone reductase or 7-ethoxyresorufin and 7-pentoxyresorufin O-dealkylation. In COMT-deficient female mice, l-dopa (30–80 mg/kg b.i.d. for 2 days) did not induce any significant changes in liver or brain glutathione S-transferase and quinone reductase activity or liver 7-ethoxyresorufin O-deethylation activity. The levels of l-dopa conjugates in urine were also negligible in COMT-deficient mice. Skin tyrosinase activity was increased in 7- to 8-day-old hairless COMT-deficient pups. The present results suggest that despite the increased hyperthermic response, COMT deficiency does not increase methamphetamine-induced hydroxyl radical production or change significantly the activity of certain enzymes involved in defense against reactive oxygen species. In conclusion, we found no evidence of increased oxidative stress in the liver or brain of adult mice lacking COMT activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号