排序方式: 共有163条查询结果,搜索用时 15 毫秒
141.
142.
目的:分析比索洛尔辅助曲美他嗪治疗射血分数保留型心力衰竭(HFpEF)的临床疗效,及对预后的影响。方法:96例HFpEF患者根据具体治疗方法分为对照组和观察组;对比临床效果以及相关指标水平。结果:观察组有效率较对照组显著升高(χ2 =6.839),其代谢当量与ST段下降总和(F=10.407,101.677)、6分钟步行距离(F=27.636)、NT-proBNP(F=52.548)以及心功能指标等改善程度均显著优于对照组。两组药物不良反应无显著差异(2.08% VS 4.17%);且主要终点事件发生情况分布存在显著差异(Log Rank =4.664)。结论:比索洛尔联合曲美他嗪治疗可显著改善HFpEF患者心功能相关指标,是一种安全有效的治疗方案。 相似文献
143.
Yogesh N.V. Reddy Gregory D. Lewis Sanjiv J. Shah Masaru Obokata Omar F. Abou-Ezzedine Marat Fudim Jie-Lena Sun Hrishikesh Chakraborty Steven McNulty Martin M. LeWinter Douglas L. Mann Lynne W. Stevenson Margaret M. Redfield Barry A. Borlaug 《Mayo Clinic proceedings. Mayo Clinic》2019,94(7):1199-1209
ObjectiveTo characterize the obese heart failure with preserved ejection fraction (HFpEF) phenotype in a multicenter cohort.Patients and MethodsThis was a secondary analysis of the randomized clinical trial RELAX (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Heart Failure with Preserved Ejection Fraction) performed between October 1, 2008, and February 1, 2012. Patients with HFpEF were classified by body mass index (BMI) as obese (BMI≥35 kg/m2) and nonobese (BMI<30 kg/m2) for comparison.ResultsObese patients with HFpEF (n=81) were younger (median age, 64 [interquartile range (IQR), 67-79] years vs 73 [IQR, 56-70] years; P<.001) but had greater peripheral edema (31% [25] vs 9% [6]; P<.001), more orthopnea (76% [56] vs 53% [35]; P=.005), worse New York Heart Association class (P=.006), and more impaired quality of life (P<.001) as compared with nonobese patients with HFpEF (n=70). Despite more severe signs and symptoms, obese patients with HFpEF had lower N-terminal pro B-type natriuretic peptide level (median, 481 [IQR, 176-1183] pg/mL vs 825 [IQR, 380-1679] pg/mL [to convert to pmol/L, multiply by 0.118]; P=.007) and lower left atrial volume index (median, 38 [IQR, 31-47] mL/m2 vs 54 [IQR, 41-63] mL/m2; P<.001). Serum C-reactive protein (median, 5.0 [IQR, 2.4-9.9] mg/dL vs 2.7 [IQR, 1.6-5.4] mg/dL [to convert to mg/L, multiply by 10?3]; P<.001) and uric acid (median, 7.8 [IQR, 6.1-8.7] mg/dL vs 6.8 [IQR, 5.5-8.3] mg/dL; P=.03) levels were higher in obese HFpEF, indicating greater systemic inflammation, than in nonobese HFpEF. Peak oxygen consumption was impaired in obese HFpEF (median, 11.1 [IQR, 9.6-14.4] mL/kg per minute vs 13.1 [IQR, 11.3-14.7] mL/kg per minute; P=.008), as was submaximal exercise capacity (6-minute walk distance, 272 [IQR, 200-332] m vs 355 [IQR, 290-415] m; P<.0001).ConclusionObese HFpEF is associated with decreased quality of life, worse symptoms of heart failure, greater systemic inflammation, worse exercise capacity, and higher metabolic cost of exertion as compared with nonobese HFpEF. Further study is required to understand the pathophysiology and potential distinct treatments for patients with the obese phenotype of HFpEF.Trial Registrationclinicaltrials.gov Identifier: NCT00763867 相似文献
144.
The escalating prevalence of obesity has been linked to substantial increases in both metabolic and cardiovascular disease. Nevertheless, the direct effects of obesity on cardiovascular health and function require further exploration. In particular, the relationship between obesity and cardiac function has received intense scrutiny. Although obesity increases the risk for development of heart failure (HF), it appears to exert a protective effect in patients in whom HF has already been diagnosed (the “obesity paradox”). The protective effects of obesity in patients with previously diagnosed HF are the focus of particularly intense research. Several explanations have been proposed, but most studies are limited by the use of body mass index to classify obesity. Because body mass index does not distinguish between fat mass, fat-free mass, and lean mass, individuals with similar body mass indices may have vastly different body composition. This article discusses the roles of body composition, diet, cardiorespiratory fitness, and weight loss in the development of cardiac dysfunction and HF and the potential protective role that body composition compartments might play in improving HF prognosis. Based on an intensive literature search (Pubmed, Google Scholar) and critical review of the literature, we also discuss how a multidisciplinary approach including a nutritional intervention targeted to reduce systemic inflammation and lean mass–targeted exercise training could potentially exert beneficial effects for patients with HF. 相似文献
145.
《Mayo Clinic proceedings. Mayo Clinic》2014,89(5):662-676
Heart failure (HF) is an important public health problem, and strategies are needed to improve outcomes and decrease health care resource utilization and costs. Its prevalence has increased as the population ages, and HF continues to be associated with a high mortality rate and frequent need for hospitalization. The total cost of care for patients with HF was $30.7 billion in 2012, and it is estimated to more than double to $69.8 billion by 2030. Given this reality, there has been recent investigation into ways of identifying and preventing HF in patients at risk (stage A HF) and those with cardiac structural and functional abnormalities but no clinical HF symptoms (stage B). For patients who have symptoms of HF (stage C), there has been important research into the most effective ways to decongest patients hospitalized with acute decompensated HF and prevent future hospital readmissions. Successful strategies to treat patients with HF and preserved ejection fraction, which has increased in prevalence, continue to be sought. We are in the midst of a rapid evolution in our ability to care for patients with end-stage HF (stage D) because of the introduction of and improvements in mechanical circulatory support. Left ventricular assist devices used as destination therapy offer an important therapeutic option to patients who do not qualify for heart transplant because of advanced age or excessive comorbidity. This review provides a thorough update on contemporary strategies in the diagnosis and management of HF by stage (A to D) that have emerged during the past several years. 相似文献
146.
提取心音时域和时频域特征,比较分析射血分数降低型心衰(HFrEF)和射血分数保留型心衰(HFpEF)患者各特征之间的关系。共采集了72列HFrEF患者和172列HFpEF患者20分钟的心音数据,提取第一心音与第二心音时限之比(TS1/TS2)、第一心音与第二心音幅值之比(S1/S2)、舒张期时限与收缩期时限之比的总体标准差(SDDS)、S1间期总体标准差(SDSSI)等4个时域特征。S变换分析其时频域特性,提取第一心音能量与第二心音能量之比(ES1/ES2),低频能量分数(EF-LF)、高频能量分数(EF-HF)、收缩期低频能量分数(EF-SLF)和高频能量分数(EF-SHF)、舒张期低频能量分数(EF-DLF)和高频能量分数(EF-DHF)7个时频域特征,分别进行统计学分析和聚类分析。TS1/TS2、S1/S2、SDDS、SDSSI、ES1/ES2、EF-SLF、EF-DLF在两组间均有统计学差异(P<0.05);EF-LF、EF-HF、EF-SHF、EF-DHF无统计学意义(P>0.05)。选择其中4个相对独立的特征值进行聚类分析,区分HFrEF组和HFpEF组的灵敏性和特异性分别为93.06%和84.88%。提取的心音特征反映了两组信号的差异性,为心音信号在慢性心力衰竭分型辅助诊断中的应用提供了理论依据。 相似文献
147.
148.
149.
Francesca Oppedisano Rocco Mollace Annamaria Tavernese Micaela Gliozzi Vincenzo Musolino Roberta Macrì Cristina Carresi Jessica Maiuolo Maria Serra Antonio Cardamone Maurizio Volterrani Vincenzo Mollace 《Nutrients》2021,13(9)
Heart failure (HF) characterized by cardiac remodeling is a condition in which inflammation and fibrosis play a key role. Dietary supplementation with n-3 polyunsaturated fatty acids (PUFAs) seems to produce good results. In fact, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti-inflammatory and antioxidant properties and different cardioprotective mechanisms. In particular, following their interaction with the nuclear factor erythropoietin 2 related factor 2 (NRF2), the free fatty acid receptor 4 (Ffar4) receptor, or the G-protein coupled receptor 120 (GPR120) fibroblast receptors, they inhibit cardiac fibrosis and protect the heart from HF onset. Furthermore, n-3 PUFAs increase the left ventricular ejection fraction (LVEF), reduce global longitudinal deformation, E/e ratio (early ventricular filling and early mitral annulus velocity), soluble interleukin-1 receptor-like 1 (sST2) and high-sensitive C Reactive protein (hsCRP) levels, and increase flow-mediated dilation. Moreover, lower levels of brain natriuretic peptide (BNP) and serum norepinephrine (sNE) are reported and have a positive effect on cardiac hemodynamics. In addition, they reduce cardiac remodeling and inflammation by protecting patients from HF onset after myocardial infarction (MI). The positive effects of PUFA supplementation are associated with treatment duration and a daily dosage of 1–2 g. Therefore, both the European Society of Cardiology (ESC) and the American College of Cardiology/American Heart Association (ACC/AHA) define dietary supplementation with n-3 PUFAs as an effective therapy for reducing the risk of hospitalization and death in HF patients. In this review, we seek to highlight the most recent studies related to the effect of PUFA supplementation in HF. For that purpose, a PubMed literature survey was conducted with a focus on various in vitro and in vivo studies and clinical trials from 2015 to 2021. 相似文献
150.