首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   13篇
  国内免费   4篇
耳鼻咽喉   8篇
妇产科学   2篇
基础医学   66篇
口腔科学   14篇
临床医学   15篇
内科学   49篇
皮肤病学   8篇
神经病学   7篇
特种医学   16篇
外科学   17篇
综合类   16篇
预防医学   6篇
眼科学   1篇
药学   13篇
中国医学   5篇
肿瘤学   1篇
  2024年   1篇
  2023年   3篇
  2022年   12篇
  2021年   17篇
  2020年   6篇
  2019年   8篇
  2018年   7篇
  2017年   1篇
  2016年   11篇
  2015年   6篇
  2014年   7篇
  2013年   13篇
  2012年   12篇
  2011年   12篇
  2010年   5篇
  2009年   9篇
  2008年   8篇
  2007年   17篇
  2006年   8篇
  2005年   8篇
  2004年   6篇
  2003年   5篇
  2002年   7篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1973年   2篇
排序方式: 共有244条查询结果,搜索用时 31 毫秒
11.
We investigated the effects of stress‐shielding on both viscoelastic properties and microstructure of collagen fibers in the Achilles tendon by proton double‐quantum filtered (1H‐DQF) NMR spectroscopy. The right hind‐limbs of 20 Japanese white rabbits were immobilized for 4 weeks in a cast with the ankle in plantarflexion. Dynamic viscoelasticity of the Achilles tendons was measured using a viscoelastic spectrometer. Proton DQF NMR signals were analyzed to determine the residual dipolar coupling of bound water molecules in the Achilles tendons. Both the dynamic storage modulus (E′) and dynamic loss modulus (E″) decreased significantly in the Achilles tendons of the stress‐shielding group. The results of the 1H‐DQF NMR examination demonstrated significantly reduced residual dipolar coupling in the Achilles tendons of this same group. The disorientation of collagen fibers by stress‐shielding should contribute to degradation of the dynamic storage and loss moduli. The alterations of the collagen fiber orientation that contributed to the function of tendinous tissue can be evaluated by performing an analysis of 1H DQF NMR spectroscopy. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:1708–1712, 2013  相似文献   
12.
Biomechanical properties of healthy and degenerated nucleus pulposus (NP) are thought to be important for future regenerative strategies for intervertebral disc (IVD) repair. However, which properties are pivotal as design criteria when developing NP replacement materials is ill understood. Therefore, we determined and compared segmental biomechanics and NP viscoelastic properties in normal and mildly degenerated discs. In eight goats, three lumbar IVDs were chemically degenerated using chondroitinase ABC (CABC), confirmed with radiography and MRI after euthanasia 12 weeks post‐operative. Neutral zone (NZ) stiffness and range of motion (ROM) were determined sagitally, laterally, and rotationally for each spinal motion segment (SMS) using a mechanical testing device. NPs were isolated for oscillatory shear experiments; elastic and viscous shear moduli followed from the ratio between shear stress and strain. Water content was quantified by weighing before and after freeze‐drying. Disc height on radiographs and signal intensity on MRI decreased (6% and 22%, respectively, p < 0.01) after CABC treatment, confirming that chemical degeneration provides a good model of disc degeneration. Furthermore, CABC‐injected IVDs had significantly lower NZ stiffness and larger ROM in lateral bending (LB) and axial rotation (AR) than controls. Rheometry consistently revealed significantly lower (10–12%) viscoelastic moduli after mild degeneration within goats, though the inter‐animal differences were relatively large (complex modulus ~12 to 41 kPa). Relative water content in the NP was unaffected by CABC, remaining at ~75%. These observations suggest that viscoelastic properties have a marginal influence on mechanical behavior of the whole SMS. Therefore, when developing replacement materials the focus should be on other design criteria, such as biochemical cues and swelling pressure. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 703–709, 2013  相似文献   
13.
Creep behaviour of flowable composites was evaluated in relation to their filler fraction and the postcure period. Solid cylindrical specimens were prepared (4 x 6 mm) using steel moulds, with thorough light curing from multiple directions at 600 mW cm(-2). The specimens were divided into two groups (n=3/material) as follows: group I, loaded 5 min after preparation; and group II, loaded after storage for 1 month in water at 37+/-1 degrees C. A constant compressive stress of 36 MPa was applied to each specimen for 2 h followed by removal of the weight for 2 h of strain recovery. Axial strain measurements were obtained continuously over the total analysis time of 4 h. The maximum creep strain ranged from 2.04 to 7.69% and from 1.03 to 6.12% for groups I and II, respectively. Flowables that had the highest percentage of filler produced the lowest creep strain. The creep response decreased with 1 month of preload storage. Clinically, the finding of this study suggests that flowable composites are unsuitable for stress-bearing areas.  相似文献   
14.
目的通过载药量对后交联凝胶贴膏流变学及体外经皮渗透特性的影响,考察后交联凝胶贴膏基质的载药量。方法采用流变学技术测定不同载药量时胶料的各项流变学参数,并以祖师麻乙醇提取物为模型药物,以祖师麻甲素的累积透过率及皮肤滞留率为指标,对成品贴膏进行体外经皮渗透试验,确定基质载药量。结果当载药量在4.0%~12.4%时,含药胶料的结构强度、黏弹性、耐温耐剪切性及抗变形能力、稳定性均符合要求,其中以载药量为6.8%时最佳;祖师麻甲素的累积透过率随载药量逐渐增大,皮肤滞留率分别变化不明显。结论通过比较流变学及体外经皮渗透试验结果,确定基质处方的最佳载药量为6.8%。  相似文献   
15.
The present work focuses on the in-silico investigation of the steady-state blood flow in straight microtubes, incorporating advanced constitutive modeling for human blood and blood plasma. The blood constitutive model accounts for the interplay between thixotropy and elasto-visco-plasticity via a scalar variable that describes the level of the local blood structure at any instance. The constitutive model is enhanced by the non-Newtonian modeling of the plasma phase, which features bulk viscoelasticity. Incorporating microcirculation phenomena such as the cell-free layer (CFL) formation or the Fåhraeus and the Fåhraeus-Lindqvist effects is an indispensable part of the blood flow investigation. The coupling between them and the momentum balance is achieved through correlations based on experimental observations. Notably, we propose a new simplified form for the dependence of the apparent viscosity on the hematocrit that predicts the CFL thickness correctly. Our investigation focuses on the impact of the microtube diameter and the pressure-gradient on velocity profiles, normal and shear viscoelastic stresses, and thixotropic properties. We demonstrate the microstructural configuration of blood in steady-state conditions, revealing that blood is highly aggregated in narrow tubes, promoting a flat velocity profile. Additionally, the proper accounting of the CFL thickness shows that for narrow microtubes, the reduction of discharged hematocrit is significant, which in some cases is up to 70%. At high pressure-gradients, the plasmatic proteins in both regions are extended in the flow direction, developing large axial normal stresses, which are more significant in the core region. We also provide normal stress predictions at both the blood/plasma interface (INS) and the tube wall (WNS), which are difficult to measure experimentally. Both decrease with the tube radius; however, they exhibit significant differences in magnitude and type of variation. INS varies linearly from 4.5 to 2 Pa, while WNS exhibits an exponential decrease taking values from 50 mPa to zero.  相似文献   
16.
The longevity of indirect restorations is primarily determined by the appropriate selection of the luting material. The function of a luting material is to seal the restoration and hold it in place for the time required for service. The mechanical behavior of luting materials and in particular their aging behavior, therefore, play a decisive role. The study provides a comparative analysis of the static and dynamic mechanical behavior of the most commonly used luting material categories—zinc phosphate cement, glass–ionomer cement, resin-modified glass–ionomer cement, resin-based composites, and self-adhesive resin-based composites—and their aging behavior. It also takes into account that luting materials are viscoelastic materials, i.e., materials that respond to external loading in a way that lies between an elastic solid and a viscous liquid. Flexural strength and modulus were determined in a three-point bending test followed by fractography analysis. The quasi-static and viscoelastic behavior was analyzed by a depth-sensing indentation test provided with a dynamic mechanical analysis (DMA) module at 20 different frequencies (1–50 Hz). The fracture toughness was evaluated in a notchless triangular prism (NTP) test. Material type exhibits the strongest influence on all measured properties, while the effect of aging becomes more evident in the material reliability. The variation of the viscoelastic parameters with aging reflects cement maturation or polymer plasticization.  相似文献   
17.
OBJECTIVE: Water is the main constituent of mucus, and its concentration is likely to be important in all aspects of mucus function, including ciliary clearance. The objective of this study was to investigate the effect of water content and osmolality of the mucus on mucociliary transportability. METHODOLOGY: Rheology and ciliary transportability of 10 sputum samples that had been subjected to various manipulations were measured using a mucus-depleted bovine trachea model. RESULTS: It was shown that addition of sodium chloride 0.2 Osmoles/kg (0.585% weight for weight) increased the transportability by 41% (P < 0.01). Evaporation of the sputum to 50% of its original weight caused a 118% increase in transportability (P < 0.0006), but iso-osmolal removal of 50% of the liquid with filter cards led to a non-significant, 25% increase in transportability. Parallel plate viscoelasticity was approximately doubled in both the evaporated and liquid-depleted samples, but was not changed by the addition of 0.2 Osmoles/kg of sodium chloride. The correlation between the osmolality of sputum and ciliary transportability (r = 0.54, P= 0.005) was better than the correlations between the viscosity (r = 0.21, P= 0.27) or elasticity (r = 0.23, P= 0.23) and ciliary transportability. CONCLUSIONS: These results suggest that the osmolality of sputum exerts a greater influence on mucociliary clearance than its viscoelastic properties.  相似文献   
18.
文题释义:黏弹性力学:连续介质力学的重要分支,又称黏弹性理论,研究黏弹性物质的力学行为、本构关系及其破坏规律,以及黏弹性体在外力和其他因素作用下的变形和应力分布。聚合物、混凝土、金属、岩石、土壤、石油、肌肉、血液和骨骼等,在一定条件下既具有弹性性质又具有黏性性质,这种兼具弹性和黏性性质的材料称为黏弹性材料,含黏弹性固体与黏弹性流体,又可分为线性黏弹性体和非线性黏弹性体。线性黏弹性体的两种极端情况即为胡克体(遵循胡克定律)和牛顿流体(遵循牛顿粘性定律)。 生物力学:是应用力学原理和方法对生物体中的力学问题定量研究的生物物理学分支,其研究范围从生物整体到系统、器官(包括血液、体液、脏器、骨骼等),从鸟飞、鱼游、鞭毛和纤毛运动到植物体液的输运等。 物力学的基础是能量守恒、动量定律、质量守恒三定律并加上描写物性的本构方程。生物力学研究的重点是与生理学、医学有关的力学问题,依研究对象的不同可分为生物流体力学、生物固体力学和运动生物力学等。 背景:以往对改性玻璃离子水门汀的力学性能研究多以压缩、弯曲实验居多,关于玻璃离子水门汀加入锶羟基磷灰石后的应力松弛、蠕变实验研究鲜有报道。 目的:对比分析传统玻璃离子水门汀、复合树脂釉质粘接剂、改性玻璃离子水门汀的应力松弛、蠕变特性。 方法:按质量比15%向玻璃离子水门汀中加入掺锶羟基磷灰石,制备改性玻璃离子水门汀。制作改性玻璃离子水门汀、复合树脂釉质粘接剂与传统玻璃离子水门汀试样,3组各取10个试样进行应力松弛实验,另取10个试样进行蠕变实验。 结果与结论:①应力松弛实验7 200 s时,传统玻璃离子水门汀组应力下降了1.18 MPa,复合树脂釉质粘接剂组应力下降了1.39 MPa,掺锶羟基磷灰石复合玻璃离子水门汀组应力下降了1.38 MPa;传统玻璃离子水门汀组应力下降量小于掺锶羟基磷灰石复合玻璃离子水门汀组、复合树脂釉质粘接剂组(P < 0.05),掺锶羟基磷灰石复合玻璃离子水门汀组和复合树脂釉质粘接剂组应力下降量无差异(P > 0.05)。②蠕变实验7 200 s时,传统玻璃离子水门汀组应变上升了0.24%,复合树脂釉质粘接剂组应变上升了0.33%,掺锶羟基磷灰石复合玻璃离子水门汀组应变上升了0.32%;传统玻璃离子水门汀组应变上升量小于掺锶羟基磷灰石复合玻璃离子水门汀组、复合树脂釉质粘接剂组(P < 0.05),掺锶羟基磷灰石复合玻璃离子水门汀组试和复合树脂釉质粘接剂组应变上升量无差异(P > 0.05)。③结果表明,15%掺锶羟基磷灰石提高和改善了玻璃离子水门汀的黏弹特性,有利于其与黏结物体的黏结,有利于提高黏结强度。 ORCID: 0000-0003-1024-5733(丁洁) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   
19.
目的 探索描述生物软组织黏弹性特性的普遍行为或规律。方法 根据生物软组织的力学结构,构建由两个线性弹簧和两个黏壶的不同组合构成的四元件黏弹性结构模型;并通过弹性理论,结合不同黏弹性模型的几何构型推导其运动微分方程,利用其微分方程分析不同四元件模型的应力松弛和蠕变行为以及反映弹性和黏性相结合的应力松弛时间和蠕变推迟时间。结果 所有可能的四元件黏弹性模型都具有普遍的本构关系、应力松弛和蠕变函数形式。通过比较模型预测结果与主动脉瓣、韧带和脑动脉等生物软组织的实验数据发现,四元件黏弹性模型能够很好地描述生物软组织的力学行为。“快”和“慢”两个特征时间τ1和τ2对生物软组织的应力松弛具有显著的影响。“快”松弛时间τ1对应力达到稳定态所需时间有明显的影响,而“慢”松弛时间τ2对松弛率的影响不显著,但对应力松弛的稳定态有明显的影响。结论 生物软组织的时间依赖性行为可以通过两个特征时间尺度来表征,即“快”和“慢”时间;且具有两个特征时间的生物软组织的应力-应变关系、应力松弛和蠕变函数具有相同的数学形式,这与所选择的...  相似文献   
20.
Background: Assessment of left ventricular (LV) function with an emphasis on contractility has been a challenge in cardiac mechanics during the recent decades. The LV function is usually described by the LV pressure-volume (P-V) relationship. Based on this relationship, the ratio of instantaneous pressure to instantaneous volume is an index for LV chamber stiffness. The standard P-V diagrams are easy to interpret but difficult to obtain and require invasive instrumentation for measuring the corresponding volume and pressure data. In the present study, we introduce a technique that can estimate viscoelastic properties, not only the elastic component but also the viscous properties of the LV based on oscillatory behavior of the ventricular chamber and it can be applied non-invasively as well. Materials and Methods: The estimation technique is based on modeling the actual long axis displacement of the mitral annulus plane toward the cardiac base as a linear damped oscillator with time-varying coefficients. Elastic deformations resulting from the changes in the ventricular mechanical properties of myocardium are represented as a time-varying spring while the viscous components of the model include a time-varying viscous damper, representing relaxation and the frictional energy loss. To measure the left ventricular axial displacement ten healthy sheep underwent left thoracotomy and sonomicrometry transducers were implanted at the apex and base of the LV. The time-varying parameters of the model were estimated by a standard Recursive Linear Least Squares (RLLS) technique. Results: LV stiffness at end-systole and end-diastole was in the range of 61.86–136 dyne/g.cm and 1.25–21.02 dyne/g.cm, respectively. Univariate linear regression was performed to verify the agreement between the estimated parameters, and the measured values of stiffness. The averaged magnitude of the stiffness and damping coefficients during a complete cardiac cycle were estimated as 58.63±12.8 dyne/g.cm and 0 dyne.s/g.cm, respectively. Conclusion: The results for the estimated elastic coefficients are consistent with the ones obtained from force-displacement diagram. The trend of change in the estimated parameters is also in harmony with the previous studies done using P-V diagram. The only input used in this model is the long axis displacement of the annulus plane, which can also be obtained non-invasively using tissue Doppler or MR imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号