首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   1篇
  国内免费   1篇
儿科学   1篇
基础医学   3篇
临床医学   1篇
内科学   37篇
皮肤病学   21篇
特种医学   1篇
外科学   4篇
综合类   1篇
预防医学   14篇
药学   7篇
肿瘤学   1篇
  2023年   2篇
  2022年   12篇
  2021年   17篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   5篇
  2009年   1篇
  2007年   3篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1994年   3篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有91条查询结果,搜索用时 13 毫秒
71.
This paper explores the modeling of physical phenomena that occur in clothing that affect the safety and biophysical comfort of the user. Three-dimensional models of textile assemblies with complex morphology used in firefighters’ multilayer protective clothing were designed in a CAD environment. The main goal of the research was to design and experimentally verify (by thermography) the models in terms of simulations when the heat transfer occurs through them in selected ambient conditions using the finite volume method. The designed models took into account the subtle differences in the geometry of selected assemblies determined by high-resolution X-ray microtomography. The designed models made it possible to calculate heat transport with a difference of about 2% to 5% in comparison to experiment that depend on the ambient conditions and the complexity of the model geometry. Moreover, the comparison of the simulation results with the experimental outcomes shows that the mapping of subtle differences in the internal structure of the assemblies in the designed models allows us to observe differences in the modeled heat transfer.  相似文献   
72.
Earthworks in the vicinity of roads, open mines, subsidence tanks and other man-made objects can lead to the creation of slopes that undergo erosion. One of the methods that can prevent their degradation and reclaim them is the use of geotextiles. An environmentally friendly option is using geotextiles that are produced from reclaimed fibres. The purpose of this study was to examine the role of the mechanical and chemical properties of geotextiles, namely, ropes and fibres (containing wool and polypropylene), not only on the rate of the greening of slopes but also on the species composition of vegetation. We studied the floristic composition, species diversity, species growth and soil properties of four sites of reclaimed slopes on which 46 study plots (5 m × 5 m) were laid out. We found that some species were more confined to a higher content of wool and that other species were more confined to the content of polypropylene. Both materials caused a decrease in the Shannon–Wiener diversity but an increase in evenness under the impact of ropes when compared to the control. They both also contributed to a higher mean height of the plants when compared to the control. The rate of the plant colonisation process was markedly improved by the reclaimed geotextiles. A longer and more detailed study is required to examine the effect of geotextile ropes on habitat creation.  相似文献   
73.
Polymer piezoelectric nanogenerators have attracted attention for mechanical energy harvesting, for powering wearable electronics and movement sensing applications. Polyvinylidene fluoride (PVDF) is a flexible and efficient electroactive polymer, however, it is a polymorph for which only two phases (of five) are piezoelectric. Herein are produced breathable and flexible textile‐compatible electroactive mats via electrospinning, and the polymorphism of PVDF nanofibers during deposition is controlled, rather than post‐fabrication, meaning that this process is directly compatible with textile manufacturing. The electrospinning process combines mechanical stretching and electrical poling and results in the alignment of dipoles in the nanofibers. The local stretching of polymer chains at each position on the fibre point impacts the polymorph relative content in that area. It is found that finer PVDF fibres (ø < 50 nm) have a lower electroactive crystal phase content compared to medium thickness‐range fibres (100 nm < ø < 500 nm), whilst thicker fibres (ø > 1000 nm) show distinct areas of lower (fibres with beading) and higher (smooth fibres) electroactive phase content. Ultimately, fibrous mats produced using solutions with a high polymer concentration have a lower bead content and the most uniform medium‐range fibre thickness, consequently resulting in the highest content of the electroactive phase.  相似文献   
74.
Fabrics were flame-retardant finished using phytic acid, a cost-effective, ecologically acceptable, and easily available flame-retardant finishing chemical. Then, on the surface of the completed fabric, silver nanoparticles (Ag NPs) were grown in situ to minimize Ag NPs aggregation and heterogeneous post-finishing and to increase washing durability. Thus, flame-retardant and antibacterial qualities were added to textiles. The as-prepared textiles were evaluated for their combustion performance, thermal performance, and antibacterial capabilities. At the same time, their microstructures were studied using X-ray diffractometry (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The findings indicated that flame-retardant textiles had an excellent launderability (limiting oxygen index = 31% after 20 washing cycles). Meanwhile, Ag NPs-loaded flame-retardant textiles demonstrated self-extinguishing properties, with a limiting oxygen index (LOI) of 27%. Bacteriostatic widths of flame-retardant antibacterial textiles against Escherichia coli and Staphylococcus aureus were 5.28 and 4.32 mm, respectively, indicating that Ag NPs-loaded flame-retardant fabrics have certain flame-retardant and antibacterial capabilities. SEM and TEM analysis indicated that nanoparticles were uniformly dispersed over Ag NPs-loaded flame-retardant textiles and were around 20 nm in size. When compared to flame-retardant textiles, Ag NPs-loaded flame-retardant fabrics showed varied binding energy of P and N on the surface and Ag ion emergence. Thermogravimetric analysis at various heating rates revealed that the main pyrolysis temperature range of flame-retardant fabrics decreased, while the main pyrolysis temperature range of Ag NPs-loaded flame-retardant fabrics increased; the heating rate influenced the pyrolysis range but not the fabric mass loss. In situ reduction synthesis of Ag NPs-loaded flame-retardant textiles may successfully reduce agglomeration and heterogeneous dispersion of nano-materials during post-finishing.  相似文献   
75.
76.
The following article describes a new type of textile signal line that can be used in smart clothing. The article presents the structure of this line and the materials used for its construction. The article also presents the results of research on the influence of the line tensile force on the value of its characteristic impedance. The above tests were carried out on lines where the electrically conductive paths do not have the form of straight lines, as is often the case in smart clothing. The article also presents a preliminary statistical analysis, the aim of which was to find those characteristics of the substrate of the line that affect changes in the characteristic impedance during stretching.  相似文献   
77.
The connection between flexible textiles and stiff electronic components has always been structurally weak and a limiting factor in the establishment of smart textiles in our everyday life. This paper focuses on the formation of reliable connections between conductive textiles and conventional litz wires using ultrasonic welding. The paper offers a promising approach to solving this problem. The electrical and mechanical performance of the samples were investigated after 15 and 30 wash-and-dry cycles in a laundry machine. Here the contact resistances and their peeling strength were measured. Furthermore, their connection properties were analysed in microsections. The resistance of the joints increased more than 300%, because the silver-coated wires suffered under the laundry cycles. Meanwhile, the mechanical strength during the peeling test decreased by only about 20% after 15 cycles and remained the same after 30 cycles. The good results obtained in this study suggest that ultrasonic welding offers a useful approach to the connection of textile electronics to conductive wires and to the manufacture of smart textiles.  相似文献   
78.
Textile-based heaters have opened new opportunities for next-generation smart heating devices. This experiment presents electrically conductive textiles for heat generation in orthopaedic compression supports. The main goal was to investigate the influence of frequent washing and stretching on heat generation durability of constructed compression knitted structures. The silver coated polyamide yarns were used to knit a half-Milano rib structure containing elastomeric inlay-yarn. Dimensional stability of the knitted fabric and morphological changes of the silver coated electro-conductive yarns were investigated during every wash cycle. The results revealed that temperature becomes stable within two minutes for all investigated fabrics. The heat generation was found to be dependent on the stretching, mostly due to the changing surface area; and it should be considered during the development of heated compression knits. Washing negatively influences the heat-generating capacity on the fabric due to the surface damage caused by the mechanical and chemical interaction during washing. The higher number of silver-coated filaments in the electro-conductive yarn and the knitted structure, protecting the electro-conductive yarn from mechanical abrasion, may ensure higher durability of heating characteristics.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号