The introduction of new topical drugs based on new chemical entities has become a rare event. Instead, pharmaceutical companies have been focused on reformulating existing drugs resulting in an ever-growing number of topical drug products for every approved drug substance. In light of this trend, soon reformulations may not be as rewarding to their sponsors as they are today unless they offer a substantial improvement over other formulations of the same drug substance and the same indication, namely improved efficacy over existing drugs, reduced side effects, unique drug combinations, or applicability for new indications. This article reviews and compares topical drug delivery systems currently under active research that are designed to offer such advantages in the coming years. The reviewed delivery systems are: liposomes, niosomes, transferosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, cyclodextrin, and sol-gel microcapsules. Among all the topical drug delivery systems currently undergoing active research, only the sol-gel microencapsulation is at clinical stages. 相似文献
A series of elastomers based on polyurea chemistry is synthesized by crosslinking amino‐terminated polyethers with a triisocyanate using an appropriate solvent, which slowed down the reactivity of the amino groups. Control of the reactivity allows the shaping of the material, and films of defined thickness can be achieved for mechanical testing. The strength of the final network can be tuned by the crosslinking density of the network chemical constitution. The resulting materials show a good thermal stability and promising mechanical enhancement.
The sol–gel process has been very useful for preparing active and stable biocatalysts, with the possibility of being reused. Especially those based on silica are well known. However, the study of the enzyme behavior during this process is not well understood until now and more, if the surfactant is involved in the synthesis mixture. This work is devoted to the encapsulation of β-galactosidase from Bacillus circulans in silica by sol–gel process, assisted by non-ionic Triton X-100 surfactant. The correlation between enzyme activity results for the β-galactosidase in three different environments (soluble in buffered aqueous reference solution, in the silica sol, and entrapment on the silica matrix) explains the enzyme behavior under stress conditions offered by the silica sol composition and gelation conditions. A stable β-galactosidase/silica biocatalyst is obtained using sodium silicate, which is a cheap source of silica, in the presence of non-ionic Triton X-100, which avoids the enzyme deactivation, even at 40 °C. The obtained biocatalyst is used in the whey hydrolysis for obtaining high value products from this waste. The preservation of the enzyme stability, which is one of the most important challenges on the enzyme immobilization through the silica sol–gel, is achieved in this study. 相似文献
Introduction: Mucosal drug delivery is an attractive route of administration, particularly in overcoming deficits of conventional dosage forms including high first-pass metabolism and poor bioavailability. Fast drainage from the target mucosa, however, represents a major limitation as it prevents sufficient drug absorption. In order to address these problems, mucoadhesive in situ gelling drug delivery systems have been investigated as they facilitate easy application in combination with a longer residence time at the administration site resulting in more desirable therapeutic effects.
Areas covered: The present review evaluates the importance of the combination of mucoadhesive and in situ gelling polymers along with mechanisms of in situ gelation and mucoadhesion. In addition, an overview about recent applications in mucosal drug delivery is provided.
Expert opinion: In situ gelling and mucoadhesive polymers proved to be essential excipients in order to prolong the mucosal residence time of drug delivery systems. Due to this prolonged residence time both local and systemic therapeutic efficacy of numerous drugs can be substantially improved. Depending on the site of administration and the incorporated drug, combinations of different polymers with in situ gelling and mucoadhesive properties are needed to keep the delivery system as long as feasible at the target site. 相似文献