排序方式: 共有90条查询结果,搜索用时 0 毫秒
31.
The objective of present research work was to develop alginate coated chitosan core shell nanoparticles (Alg-CS-NPs) for oral delivery of low molecular weight heparin, enoxaparin. Chitosan nanoparticles (CS-NPs) were synthesized by ionic gelation of chitosan using sodium tripolyphosphate. Core shell nanoparticles were prepared by coating CS-NPs with alginate solution under mild agitation. The Alg-CS-NPs were characterized for surface morphology, surface coating, particle size, polydispersity index, zeta potential, drug loading and entrapment efficiency using SEM, Zeta-sizer, FTIR and DSC techniques. Alginate coating increased the size of optimized chitosan nanoparticles from around 213 nm to about 335 nm as measured by dynamic light scattering in zeta sizer and further confirmed by SEM analysis. The performance of optimized enoxaparin loaded Alg-CS-NPs was evaluated by in vitro drug release studies, in vitro permeation study across intestinal epithelium, in vivo venous thrombosis model, particulate uptake by intestinal epithelium using fluorescence microscopy and pharmacokinetic studies in rats. Coating of alginate over the CS-NPs improved the release profile of enoxaparin from the nanoparticles for successful oral delivery. In vitro permeation studies elucidated that more than 75% enoxaparin permeated across the intestinal epithelium with Alg-CS-NPs. The Alg-CS-NPs significantly increased (p < 0.05) the oral bioavailability of enoxaparin in comparison to plain enoxaparin solution as revealed by threefold increase in AUC of plasma drug concentration time curve and around 60% reduction in thrombus formation in rat venous thrombosis model. The core shell Alg-CS-NPs showed promising potential for oral delivery and significantly enhanced the in vivo oral absorption of enoxaparin. 相似文献
32.
J. Tomasina L. Poulain E. Abeilard F. Giffard E. Brotin L. Carduner F. Carreiras P. Gauduchon S. Rault A. Malzert-Fréon 《International journal of pharmaceutics》2013
We report the development of folate-functionalized nanoparticles able to target folate receptors, and to deliver a poorly water soluble cytotoxic agent, a tripentone, in ovarian carcinoma. The stability under incubation of lipid nanoparticles formulated by a low-energy phase inversion temperature method was investigated. Thanks to the presence of Labrasol®, a macrogolglyceride into the composition of the nanocarriers, the conjugation of different quantities of a folate derivate (folic acid-polyethylene glycol2000-distearylphosphatidylethanolamine) to nanoparticles was possible by a rapid, soft, very simple post-insertion process. As determined by dynamic light scattering, nanoparticles present a monodisperse diameter of about 100 nm, a spherical shape as attested by transmission electron micrographs, a weakly negative surface zeta potential, and are able to encapsulate the tripentone MR22388. The presence of folate receptors on SKOV3 human ovarian cancer cells was identified by fluorescent immunocytochemistry. Cellular uptake studies assessed by flow cytometry indicated that these nanoparticles reached the SKOV3 cells rapidly, and were internalized by a folate-receptor mediated endocytosis pathway. Moreover, nanoparticles allowed the rapid delivery of the antitumor agent tripentone into cells as shown in vitro by real-time cellular activity assay. Such folate-lipid nanoparticles are a potential carrier for targeted delivery of poorly water soluble compounds into ovarian carcinoma. 相似文献
33.
微型化介质研磨法制备难溶性黄酮类化合物纳米混悬剂 总被引:2,自引:8,他引:2
目的探讨微型化介质研磨法制备难溶性黄酮类化合物纳米混悬剂(NS)的可行性。方法以磁力搅拌器为动力装置,西林瓶为研磨室,采用氧化锆珠子为研磨介质构建微型化介质研磨法制备槲皮素(QCT)、黄芩苷(BCN)、葛根素(PRN)及水飞蓟素(SLR)4种黄酮类化合物NS,以平均粒径、多分散度指数(PDI)和稳定性指数(SI)为指标,对工艺参数转速、研磨介质用量和研磨时间进行优化。结果 QCT-NS、BCN-NS、PRN-NS和SLR-NS制备的最佳工艺参数转速、研磨时间、氧化锆用量与药物混悬液比例分别为QCT-NS 800 r/min、8 h、1∶1,BCN-NS 800 r/min、24 h、1∶1,PRN-NS800 r/min、24 h、2∶1,SLR-NS 800 r/min、12 h、1∶1;以最佳工艺参数制备所得QCT-NS、BCN-NS、PRN-NS和SLR-NS的平均粒径均在400 nm以下,QCT-NS、BCN-NS和SLR-NS的PDI在0.3以下,SI高于0.75;PRN-NS的PDI和SI分别为0.41和0。结论微型化介质研磨法制备难溶性黄酮类化合物NS工艺简单、稳定可行,值得进一步深入研究。 相似文献
34.
Kyrylyuk AV van der Schoot P 《Proceedings of the National Academy of Sciences of the United States of America》2008,105(24):8221-8226
We apply continuum connectedness percolation theory to realistic carbon nanotube systems and predict how bending flexibility, length polydispersity, and attractive interactions between them influence the percolation threshold, demonstrating that it can be used as a predictive tool for designing nanotube-based composite materials. We argue that the host matrix in which the nanotubes are dispersed controls this threshold through the interactions it induces between them during processing and through the degree of connectedness that must be set by the tunneling distance of electrons, at least in the context of conductivity percolation. This provides routes to manipulate the percolation threshold and the level of conductivity in the final product. We find that the percolation threshold of carbon nanotubes is very sensitive to the degree of connectedness, to the presence of small quantities of longer rods, and to very weak attractive interactions between them. Bending flexibility or tortuosity, on the other hand, has only a fairly weak impact on the percolation threshold. 相似文献
35.
Silvia PetersenFrank Steiniger Dagmar FischerAlfred Fahr Heike Bunjes 《European journal of pharmaceutics and biopharmaceutics》2011,79(1):150-161
Although lipid nanoparticles represent potent drug carriers, for many formulations toxicity data are rare. Thus, in this study, the effect of different lipid nanoparticles on the cell viability of L929 mouse fibroblasts was systematically investigated using the MTT assay. The formulations were composed of trimyristin, tristearin or cholesteryl myristate stabilized with poloxamer 188, polysorbate 80, polyvinyl alcohol or a blend of soybean phospholipid and sodium glycocholate. Depending on lipid and storage conditions, the nanoparticles were prepared in different physical states or crystal modifications leading to different particle shapes. The cell viability was influenced considerably by the physical state of the particle matrix with crystalline nanoparticles causing a stronger decrease in viability than the corresponding liquid or liquid crystalline particles. Effects on the cell viability were also related to the type of matrix lipid, stabilizer and the particle shape. However, the effects of differently shaped particles of different polymorphic modifications of crystalline tristearin were comparable. The low viability caused by poloxamer 188-stabilized particles could be correlated with a strong cell uptake which was investigated by confocal laser scanning microscopy. 相似文献
36.
John K. Leypoldt Catherine M. Hoff Alp Akonur Clifford J. Holmes 《Peritoneal dialysis international》2015,35(4):428-435
♦ Background:
Peritoneal dialysis (PD) solutions containing icodextrin as the osmotic agent have advantages during long dwells. The glucose polymers that constitute icodextrin are a heterogeneous mix of molecules with a polydispersity [ratio of weight-average to number-average molecular weight (Mw/Mn)] of approximately 2.6. The present study evaluates whether modifications in the polydispersity and concentration of glucose polymers can improve ultrafiltration (UF) without an associated increase in carbohydrate absorption (CA).♦ Methods:
Computer simulations using a three-pore model of peritoneal transport during a long dwell in PD patients predict that, in general, compared with 7.5% icodextrin, glucose polymers with a Mw greater than or equal to 7.5 kDa, a polydispersity less than 2.6, and concentrations greater than 7% could achieve higher UF without higher CA. Based on the simulations, we hypothesized that, compared with 7.5% icodextrin, glucose polymers with a Mw of 18 – 19 kDa and a polydispersity of 2.0 at 11% concentration could achieve higher UF without a higher CA. We tested this hypothesis in experimental studies using 8-hour dwells in New Zealand White rabbits. In those studies, UF was measured by complete fluid collection, and CA was measured by subtracting the total carbohydrate in the collected fluid from the carbohydrate initially infused.♦ Results:
The UF was higher with 11% 19 kDa glucose polymer than with 7.5% icodextrin (mean ± standard deviation: 89 ± 31 mL vs 49 ± 15 mL; p = 0.004) without higher CA (5.2 ± 0.9 g vs 5.0 ± 0.9 g, p = 0.7). Similar results were seen with the 11% 18 kDa glucose polymer, which, compared with 7.5% icodextrin, resulted in higher UF (mean ± standard deviation: 96 ± 18 mL vs 66 ± 17 mL; p < 0.001) without higher CA (4.8 ± 0.7 g vs 5.2 ± 0.6 g, p = 0.2).♦ Conclusions:
The findings demonstrate that, compared with 7.5% icodextrin solution, long-dwell PD solutions containing 11% glucose polymers with a Mw of 18–19 kDa and a polydispersity of 2.0 can provide higher UF without higher CA. 相似文献37.
用链长分布不同的活性聚苯乙烯子聚物与二乙烯基苯进行阴离子嵌段共聚,合成了一系列两相模型交联网络。以作者等提出的方法测定了所合成网络的结构非均一因子Z。实验测定的网络结构非均一因子Z与交联前聚苯乙烯活性链的分子量分布宽度指数d之间有平行的相应变化规律,表明所给予的非均一因子Z的物理意义是合理的。同时说明,子聚物链长分布较宽时,在网络的高交联区中除了二乙烯基苯外,还有一些对溶胀无贡献的子聚物以悬挂链的形式存在。 相似文献
38.
Anna Pajor-
wierzy Dawid Stako Radosaw Pawowski Grzegorz Mordarski Alexander Kamyshny Krzysztof Szczepanowicz 《Materials》2021,14(9)
The effect of polydispersity of nickel-silver core-shell nanoparticles (Ni-Ag NPs) on the conductivity of ink coatings was studied. Ni-Ag NPs of various average diameters (100, 220, and 420 nm) were synthesized and utilized for the preparation of conductive inks composed of monodisperse NPs and their polydisperse mixtures. The shell thickness of synthesized Ni-Ag NPs was found to be in the range of 10–20 nm and to provide stability of a core metal to oxidation for at least 6 months. The conductivity of metallic films formed by inks with monodisperse Ni-Ag NPs was compared with those formed by polydisperse inks. In all cases, the optimal conditions for the formation of conductive patterns (weight ratio of monodisperse NPs for polydisperse composition, the concentration of the wetting agent, sintering temperature, and duration) were determined. It was found that metallic films formed by polydisperse ink containing 100, 220, and 420 nm Ni-Ag NPs with a mass ratio of 1:1.5:0.5, respectively, are characterized by the lowest resistivity, 10.9 µΩ·cm, after their thermal post-coating sintering at 300 °C for 30 min that is only 1.6 higher than that of bulk nickel. 相似文献
39.
40.
Naila Mebarek Anne Aubert-Pouëssel Corine Gérardin Rita Vicente Jean-Marie Devoisselle Sylvie Bégu 《International journal of pharmaceutics》2013
Poly(methacrylic acid)-b-poly(ethylene oxide) are double hydrophilic block copolymers, which are able to form micelles by complexation with a counter-polycation, such as poly-l-lysine. A study was carried out on the ability of the copolymers to interact with model membranes as a function of their molecular weights and as a function of pH. Different behaviors were observed: high molecular weight copolymers respect the membrane integrity, whereas low molecular weight copolymers with a well-chosen asymmetry degree can induce a membrane alteration. Hence by choosing the appropriate molecular weight, micelles with distinct membrane interaction behaviors can be obtained leading to different intracellular traffics with or without endosomal escape, making them interesting tools for cell engineering. Especially micelles constituted of low molecular weight copolymers could exhibit the endosomal escape property, which opens vast therapeutic applications. Moreover micelles possess a homogeneous nanometric size and show variable properties of disassembly at acidic pH, of stability in physiological conditions, and finally of cyto-tolerance. 相似文献