首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5765篇
  免费   445篇
  国内免费   269篇
耳鼻咽喉   36篇
儿科学   27篇
妇产科学   24篇
基础医学   544篇
口腔科学   802篇
临床医学   332篇
内科学   778篇
皮肤病学   108篇
神经病学   289篇
特种医学   186篇
外国民族医学   1篇
外科学   392篇
综合类   851篇
一般理论   3篇
预防医学   545篇
眼科学   89篇
药学   602篇
  2篇
中国医学   803篇
肿瘤学   65篇
  2024年   37篇
  2023年   109篇
  2022年   400篇
  2021年   486篇
  2020年   222篇
  2019年   144篇
  2018年   164篇
  2017年   169篇
  2016年   168篇
  2015年   191篇
  2014年   319篇
  2013年   400篇
  2012年   316篇
  2011年   376篇
  2010年   286篇
  2009年   239篇
  2008年   278篇
  2007年   249篇
  2006年   253篇
  2005年   263篇
  2004年   223篇
  2003年   164篇
  2002年   139篇
  2001年   107篇
  2000年   81篇
  1999年   71篇
  1998年   73篇
  1997年   73篇
  1996年   59篇
  1995年   51篇
  1994年   39篇
  1993年   29篇
  1992年   40篇
  1991年   40篇
  1990年   26篇
  1989年   16篇
  1988年   16篇
  1987年   11篇
  1986年   14篇
  1985年   21篇
  1984年   28篇
  1983年   20篇
  1982年   15篇
  1981年   9篇
  1980年   16篇
  1979年   5篇
  1978年   6篇
  1976年   7篇
  1972年   3篇
  1970年   2篇
排序方式: 共有6479条查询结果,搜索用时 15 毫秒
101.
102.
Graphene is fundamentally a two-dimensional material with extraordinary optical, thermal, mechanical, and electrical characteristics. It has a versatile surface chemistry and large surface area. It is a carbon nanomaterial, which comprises sp2 hybridized carbon atoms placed in a hexagonal lattice with one-atom thickness, giving it a two-dimensional structure. A large number of synthesis techniques including epitaxial growth, liquid phase exfoliation, electrochemical exfoliation, mechanical exfoliation, and chemical vapor deposition are used for the synthesis of graphene. Graphene prepared using different techniques can have a number of benefits and deficiencies depending on its application. This study provides a summary of graphene preparation techniques and critically assesses the use of graphene, its derivates, and composites in environmental applications. These applications include the use of graphene as membrane material for the detoxication and purification of water, active material for gas sensing, heavy metal ions detection, and CO2 conversion. Furthermore, a trend analysis of both synthesis techniques and environmental applications of graphene has been performed by extracting and analyzing Scopus data from the past ten years. Finally, conclusions and outlook are provided to address the residual challenges related to the synthesis of the material and its use for environmental applications.  相似文献   
103.
Atomic Diffusion Additive Manufacturing (ADAM) is an innovative Additive Manufacturing process that allows the manufacture of complex parts in metallic material, such as copper among others, which provides new opportunities in Rapid Tooling. This work presents the development of a copper electrode manufactured with ADAM technology for Electrical Discharge Machining (EDM) and its performance compared to a conventional electrolytic copper. Density, electrical conductivity and energy-dispersive X-ray spectroscopy were performed for an initial analysis of both ADAM and electrolytic electrodes. Previously designed EDM experiments and optimizations using genetic algorithms were carried out to establish a comparative framework for both electrodes. Subsequently, the final EDM tests were carried out to evaluate the electrode wear rate, the roughness of the workpiece and the rate of material removal for both electrodes. The EDM results show that ADAM technology enables the manufacturing of functional EDM electrodes with similar material removal rates and rough workpiece finishes to conventional electrodes, but with greater electrode wear, mainly due to internal porosity, voids and other defects observed with field emission scanning electron microscopy.  相似文献   
104.
The paper presents a literature review on the development of microvoids in metals, leading to ductile fracture associated with plastic deformation, without taking into account the cleavage mechanism. Particular emphasis was placed on the results of observations and experimental studies of the characteristics of the phenomenon itself, without in-depth analysis in the field of widely used FEM modelling. The mechanism of void development as a fracture mechanism is presented. Observations of the nucleation of voids in metals from the turn of the 1950s and 1960s to the present day were described. The nucleation mechanisms related to the defects of the crystal lattice as well as those resulting from the presence of second-phase particles were characterised. Observations of the growth and coalescence of voids were presented, along with the basic models of both phenomena. The modern research methods used to analyse changes in the microstructure of the material during plastic deformation are discussed. In summary, it was indicated that understanding the microstructural phenomena occurring in deformed material enables the engineering of the modelling of plastic fracture in metals.  相似文献   
105.
The present work concerns the intermetallic compound (IMC) existing in the Ag–Sn system and its potential use in electronics as attachment materials allowing the adhesion of the chip to the substrate forming the power module. First, we present the synthesis protocol in polyol medium of a compound with the chemical formula Ag5Sn0.9 belonging to the solid solution of composition located between 9 and 16 at.% Sn, known as solid solution ζ (or ζ-Ag4Sn). This phase corresponds to the peritectic invariant point at 724 °C. Differential thermal analysis and X-ray dispersive analysis confirm the single-phased (monocrystalline) nature of the Ag5Sn0.9 powder issued after synthesis. Scanning electron microscopy shows that Ag5Sn0.9 particles are spherical, and range in submicronic size of around 0.18 μm. X-ray diffraction analysis reveals that the ζ phase mostly exists under the two allotropic varieties (orthorhombic symmetry and hexagonal symmetry) with however a slight excess of the hexagonal variety (60% for the hexagonal variety and 40% for the orthorhombic variety). The lattice parameters resulting from this study for the two allotropic varieties are in good agreement with the Hume-Rothery rules.  相似文献   
106.
As the use of carbon-fiber-reinforced plastic (CFRP) and glass-fiber-reinforced plastic is frequent in the field of construction, a method for measuring FRP resin content is needed. Herein, thermal gravimetric analysis (TGA) was employed to optimize the heat treatment conditions (temperature and time) for determining the resin content in which only the resin was removed without fiber heat loss. Accordingly, the measurement was performed in 100 °C increments at a resin pyrolysis temperature up to 800 °C with a heat treatment time of 4 h to continuously observe the degree of thermal decomposition of the resin. The thermal decomposition of unsaturated polyester was confirmed at the melting point (350 ℃) regardless of the type of fibers used as reinforcement. In the case of CFRP, most of the resin decomposition occurred at 300 °C. Notably, the resin was removed at a pyrolysis temperature of 400 ℃ and almost no change in weight was observed. However, at a pyrolysis temperature of 500 °C or higher, the thermal decomposition of the fibers occurred partially. The results show that the composite resin was removed within 10 min at a pyrolysis temperature of 400 °C in an air atmosphere when using TGA.  相似文献   
107.
Internal delamination damage in composite connection structures can occur in the process of the overloading of a high-speed bearing, with alternating force loads, high or low temperatures, and the humid or hot environment loads. Mechanical drilling and riveting are usually used at the delamination position and outside its envelope, to inhibit delamination expansion. However, delamination damage can change the structural stress state of the original structure. It is difficult to achieve a better inhibition effect using conventional drilling mechanisms and process methods with intact composite panels, and new damage forms can even be introduced into the drilling process due to unreasonable parameter settings. Therefore, this paper combined finite element simulation technology and experimental processing technology, to analyze the influence of different delamination dimensions and positions on processing quality. The results showed that the feed speed and rotating speed had significant effects on the axial force of composite laminates. In particular, in the case of a low speed and high feed, the axial force will increase significantly.  相似文献   
108.
A nitrogen fertilizer slow-release membrane was proposed using polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), epoxy resin, and zeolite as raw materials. The effects of the water-based copolymer (PVA:PVP) solution ratio A (A1–A4) and zeolite amount B (B1–B4) on the water absorption rate (XS), water permeability (TS), fertilizer permeability (TF), tensile strength (KL), elongation at break (DSL), and viscosity (ND) of the membrane were explored using the swelling method, a self-made device, and a universal testing machine. The optimal combination of the water-based copolymer and zeolite amount was determined by the coefficient-of-variation method. The results show that the effects of the decrease in A on KL and the increase in B on KL and DSL are promoted first and then inhibited. DSL and ND showed a negative response to the A decrease, whereas XS, TS, and TF showed a positive response. The effect of increasing B on ND, TS, and TF showed a zigzag fluctuation. In the condition of A1–A3, XS showed a negative response to the B increase, whereas in the condition of A4, XS was promoted first and then inhibited. Adding PVP and zeolite caused the hydroxyl stretching vibration peak of PVA at 3300 cm−1 to widen; the former caused the vibration peak to move to low frequencies, and the latter caused it to move to high frequencies. The XRD pattern shows that the highest peak of zeolite is located at 2θ = 7.18° and the crystallization peak of the composite membrane increases with the rise in the proportion of zeolite. Adding PVP made the surface of the membrane smooth and flat, and adding a small amount of zeolite improved the mechanical properties of the membrane and exhibited good compatibility with water-based copolymers. In the evaluation model of the physicochemical properties of sustained-release membrane materials, the weight of all indicators was in the following order: TF > ND > TS > KL > XL > DSL. The optimal membrane material for comprehensive performance was determined to be A2B3.  相似文献   
109.
Lightweight alloys have great importance for car manufacturers that aim to produce safer, lighter, and more environmentally friendly vehicles. As a result, it is essential to develop new lightweight alloys, with superior properties to conventional ones, respecting the demands of the market. Al and its alloys are good candidates for reducing the overall weight of vehicles. The objective of this research was to understand the possibility to synthesize different Al alloys and intermetallics by implementing the plasma system and using two different Al-Ni and Al-Mo powder systems. This was done by separately injecting non-reacted raw Al-Ni and Al-Mo composite powder systems into the plasma reactor. In the first step, the milling parameters were optimized to generate Al-Ni and Al-Mo composite powders, with sizes over about 30 µm, having, respectively, a homogeneous mixture of elemental Al and Ni, and Al and Mo in their particles. Each of the composite powders was then injected separately into the plasma system to provide conditions for the reaction of their elements together. The obtained Al-Ni and Al-Mo powders were then studied using different methods such as scanning electron microscopy, X-ray diffractometry, and energy dispersive X-ray analysis. Regardless of the initially used powder system, the obtained powders were consisting of large spherical particles surrounded by a cloud of fine porous particles. Different phases such as Al, AlNi3, Al3Ni2, and AlNi were detected in the particles of the Al-Ni powder system and Al, Mo, AlMo3, MoO3, and MoO2 in the Al-Mo powder system.  相似文献   
110.
Due to its unique crystal structure and nano-properties, hydroxyapatite (HA) has become an important inorganic material with broad development prospects in electrical materials, for fire resistance and insulation, and in bone repair. However, its application is limited to some extent because of its low strength, brittleness and other shortcomings. Graphene (G) and its derivative graphene oxide (GO) are well known for their excellent mechanical properties, and are widely used to modify HA by domestic and foreign scholars, who expect to achieve better reinforcement and toughening effects. However, the enhancement mechanism has not been made clear. Accordingly, in this study, G and GO were selected to modify HA using the first-principles calculation method to explore the theory of interfacial bonding of composites and explain the microscopic mechanism of interfacial bonding. First-principles calculation is a powerful tool used to solve experimental and theoretical problems and predict the structure and properties of new materials with precise control at the atomic level. Therefore, the bonding behaviors of hydroxyapatite (100), (110) and (111) crystal planes with G or GO were comprehensively and systematically studied using first-principles calculation; this included analyses of the density of states and differential charge density, and calculations of interfacial adhesion work and elastic moduli. Compared to HA (100) and (111) crystal planes, HA (110) had the best bonding performance with G and with GO, as revealed by the calculation results. The composite material systems of HA (110)/G and HA (110)/GO had the smallest density of states at the Fermi level, the largest charge transfers of Ca atoms, the largest interfacial adhesion work and the most outstanding elastic moduli. These results provide a theoretical basis for the modification of HA to a certain extent, and are beneficial to the expansion of the scope of its application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号