首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6161篇
  免费   613篇
  国内免费   257篇
耳鼻咽喉   13篇
儿科学   2篇
妇产科学   6篇
基础医学   868篇
口腔科学   251篇
临床医学   454篇
内科学   616篇
皮肤病学   119篇
神经病学   99篇
特种医学   177篇
外科学   146篇
综合类   669篇
预防医学   257篇
眼科学   46篇
药学   2684篇
中国医学   325篇
肿瘤学   299篇
  2024年   15篇
  2023年   113篇
  2022年   219篇
  2021年   437篇
  2020年   200篇
  2019年   267篇
  2018年   369篇
  2017年   350篇
  2016年   459篇
  2015年   358篇
  2014年   502篇
  2013年   1028篇
  2012年   329篇
  2011年   404篇
  2010年   263篇
  2009年   243篇
  2008年   197篇
  2007年   215篇
  2006年   187篇
  2005年   167篇
  2004年   125篇
  2003年   82篇
  2002年   60篇
  2001年   40篇
  2000年   31篇
  1999年   44篇
  1998年   39篇
  1997年   27篇
  1996年   32篇
  1995年   32篇
  1994年   26篇
  1993年   18篇
  1992年   29篇
  1991年   15篇
  1990年   21篇
  1989年   11篇
  1988年   14篇
  1987年   11篇
  1986年   10篇
  1985年   10篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有7031条查询结果,搜索用时 140 毫秒
941.
《Nanotoxicology》2013,7(1):30-42
Abstract

To date, knowledge gaps and associated uncertainties remain unaddressed on the effects of nanoparticles (NPs) on plants. This study was focused on revealing some of the physiological effects of magnetite (Fe3O4) NPs on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta cv. white cushaw) plants under hydroponic conditions. This study for the first time reports that Fe3O4 NPs often induced more oxidative stress than Fe3O4 bulk particles in the ryegrass and pumpkin roots and shoots as indicated by significantly increased: (i) superoxide dismutase and catalase enzyme activities, and (ii) lipid peroxidation. However, tested Fe3O4 NPs appear unable to be translocated in the ryegrass and pumpkin plants. This was supported by the following data: (i) No magnetization was detected in the shoots of either plant treated with 30, 100 and 500 mg l?1 Fe3O4 NPs; (ii) Fe K-edge X-ray absorption spectroscopic study confirmed that the coordination environment of Fe in these plant shoots was similar to that of Fe-citrate complexes, but not to that of Fe3O4 NPs; and (iii) total Fe content in the ryegrass and pumpkin shoots treated with Fe3O4 NPs was not significantly increased compared to that in the control shoots.  相似文献   
942.
《Nanotoxicology》2013,7(2):125-139
Abstract

Deciphering the molecular basis of toxicology mechanism induced by nanoparticles (NPs) remains an essential challenge. Ion Beam Analysis (IBA) was applied in combination with Transmission Electron Microscopy and Confocal Microscopy to analyze human keratinocytes exposed to TiO2-NPs. Investigating chemical elemental distributions using IBA gives rise to a fine quantification of the TiO2-NPs uptake within a cell and to the determination of the intracellular chemical modifications after TiO2-NPs internalization. In addition, fluorescent dye-modified TiO2-NPs have been synthesized to allow their detection, precise quantification and tracking in vitro. The internalization of these TiO2-NPs altered the calcium homeostasis and induced a decrease in cell proliferation associated with an early keratinocyte differentiation, without any indication of cell death. Additionally, the relation between the surface chemistry of the TiO2-NPs and their in vitro toxicity is clearly established and emphasizes the importance of the calcium homeostasis alteration in response to the presence of TiO2-NPs.  相似文献   
943.
《Nanotoxicology》2013,7(4):378-388
Abstract

Little is known about the effects of manufactured nanomaterials on the function of nerves. The experiment aimed to test the effects of three different nanomaterials (1 mg l-1 of TiO2 NPs, Ag NPs or SWCNT) on the compound action potential of the shore crab (Carcinus maenas) compared with an appropriate bulk powder or metal salt control (bulk TiO2 powder, AgNO3 and carbon black respectively). In single action potential recordings, there were no effects of any of the nanomaterials on the peak amplitude, duration, rate of rise (depolarisation), or rate of decrease (repolarisation) of the compound action potential in crab saline, despite settling of each nanomaterial directly onto the nerve preparation. The ability of the crab nerve to be stimulated to tetanus was also unaffected by exposure to the nanomaterials compared with the appropriate bulk powder or metal salt control. Solvent controls with sodium dodecyl sulfate (SDS) also had no effect on action potentials. Overall, the study concludes that there were no effects of the materials at the concentrations tested on the compound action potential of the shore crab in physiological saline.  相似文献   
944.
945.
946.
《Nanotoxicology》2013,7(7):952-963
Abstract

The inhalation or application of nanoparticles (NPs) has serious impacts on immunological reactivity. However, the effects of NPs on the immune system are influenced by numerous factors, which cause a high variability in the results. Here, mice were exposed to a three month continuous inhalation of copper oxide (CuO) NPs, and at different time intervals (3, 14, 42 and 93?days), the composition of cell populations of innate and adaptive immunity was evaluated in the spleen by flow cytometry. The ability of spleen cells from exposed and control mice to respond to stimulation with T- or B-cell mitogens by proliferation and by production of cytokines IL-2, IL-6, IL-10, IL-17 and IFN-γ was characterized. The results showed that the inhalation of CuO NPs predominantly affects the cells of innate immunity (changes in the proportion of eosinophils, neutrophils, macrophages and antigen-presenting cells) with a minimal effect on the percentage of T and B lymphocytes. However, the proliferative and secretory activity of T cells was already significantly enhanced after 3?days from the start of inhalation, decreased on day 14 and normalized at the later time intervals. There was no correlation between the impacts of NPs on the cells of innate and adaptive immunity. The results have shown that the inhalation of CuO NPs significantly alters the composition of cell populations of innate immunity and modulates the proliferation and production of cytokines by cells of the adaptive immune system. However, the immunomodulatory effects of inhaled NPs strongly depend on the time of inhalation.  相似文献   
947.
《Nanotoxicology》2013,7(5):682-700
Abstract

Nanoparticles (NPs) have been widely used in biomedical field for therapeutic treatments, drug carriers, and bio-imaging agent. Recent studies have highlighted the possibility of utilizing inorganic NPs in inducing endothelial leakiness through endothelial remodeling to promote drug transport across the barrier. However, an uncontrolled and persistent leakiness could lead to promiscuous transport of molecules and cells across the barrier, highlighting the pressing need to control the timely recovery from endothelial cell leakiness. Herein, we show that angiopoietin-1 (Ang1) could promote recovery of human microvascular endothelial cells (HMVECs) from titanium dioxide nanoparticle (TiO2 NPs)-induced endothelial leakiness. Ang1 is known as an anti-permeability growth factor which forms complexes with its receptor Tie2 at the cell-to-cell junctions. We find that the introduction of Ang1 not only accelerates the recovery of NP-induced endothelial leakiness (NanoEL) but also promotes cell rigidity by increasing tubulin acetylation, thereby remodels the endothelial cells to further mitigate the effects of NP exposure through the activation of the Akt pathway. Using in vitro metastasis model, we further show that HMVECs treated with TiO2 NPs followed by Ang1 could reduce migration of human skin cancer A431 cells across the endothelial barrier. In summary, Ang1 plays important roles in promoting the recovery of endothelial cell leakiness and endothelial stability through a mechano-transduction pathway and shows great potential as key modulator that allows material scientist to regulate endothelial leakiness induced by NPs.  相似文献   
948.
《Nanotoxicology》2013,7(6):795-811
Abstract

Human oral exposure to copper oxide nanoparticles (NPs) may occur following ingestion, hand-to-mouth activity, or mucociliary transport following inhalation. This study assessed the cytotoxicity of Cupric (II) oxide (CuO) and Cu2O-polyvinylpyrrolidone (PVP) coated NPs and copper ions in rat (intestine epithelial cells; IEC-6) and human intestinal cells, two- and three-dimensional models, respectively. The effect of pretreatment of CuO NPs with simulated gastrointestinal (GI) fluids on IEC-6 cell cytotoxicity was also investigated. Both dose- and time-dependent decreases in viability of rat and human cells with CuO and Cu2O-PVP NPs and Cu2+ ions was observed. In the rat cells, CuO NPs had greater cytotoxicity. The rat cells were also more sensitive to CuO NPs than the human cells. Concentrations of H2O2 and glutathione increased and decreased, respectively, in IEC-6 cells after a 4-h exposure to CuO NPs, suggesting the formation of reactive oxygen species (ROS). These ROS may have damaged the mitochondrial membrane of the IEC-6 cells causing a depolarization, as a dose-related loss of a fluorescent mitochondrial marker was observed following a 4-h exposure to CuO NPs. Dissolution studies showed that Cu2O-PVP NPs formed soluble Cu whereas CuO NPs essentially remained intact. For GI fluid-treated CuO NPs, there was a slight increase in cytotoxicity at low doses relative to non-treated NPs. In summary, copper oxide NPs were cytotoxic to rat and human intestinal cells in a dose- and time-dependent manner. The data suggests Cu2O-PVP NPs are toxic due to their dissolution to Cu ions, whereas CuO NPs have inherent cytotoxicity, without dissolving to form Cu ions.  相似文献   
949.
《Nanotoxicology》2013,7(6):812-826
Abstract

Silver nanoparticles are currently one of the most widely used metallic nanoparticles. Due to their antibacterial properties, they are applied in textiles, house-holds items, and medical devices, among many other products. Understanding the potential toxicity associated with silver nanoparticles and the differential effect that nanoparticles of different size might induce is crucial, due to the increasing human and environmental exposure to this type of nanoparticles. In this work, we explored the different biomolecular mechanisms underlying the toxicity of silver nanoparticles in a size-dependent manner. Quantitative proteomic analysis of hepatic cells exposed to 10 and 60?nm silver nanoparticles demonstrated the alteration of a different set of proteins depending on the particle size. We demonstrated that while 10?nm silver nanoparticles induce nucleolar stress and ribosome biogenesis halt, both types of nanoparticles induce DNA damage and oxidative stress but through different pathways. In addition, both types of nanoparticles also affected cell proliferation, disrupted the cell cycle and ultimately, induced apoptosis. The alteration of different cellular mechanisms in a size-dependent manner, have relevant implications not only from a toxicity point of view, but also for the potential applications of silver nanoparticles.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号