首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6249篇
  免费   612篇
  国内免费   258篇
耳鼻咽喉   13篇
儿科学   2篇
妇产科学   6篇
基础医学   869篇
口腔科学   251篇
临床医学   454篇
内科学   682篇
皮肤病学   119篇
神经病学   99篇
特种医学   177篇
外科学   146篇
综合类   672篇
预防医学   260篇
眼科学   47篇
药学   2697篇
中国医学   326篇
肿瘤学   299篇
  2024年   19篇
  2023年   113篇
  2022年   303篇
  2021年   437篇
  2020年   200篇
  2019年   267篇
  2018年   369篇
  2017年   350篇
  2016年   459篇
  2015年   358篇
  2014年   502篇
  2013年   1028篇
  2012年   329篇
  2011年   404篇
  2010年   263篇
  2009年   243篇
  2008年   197篇
  2007年   215篇
  2006年   187篇
  2005年   167篇
  2004年   125篇
  2003年   82篇
  2002年   60篇
  2001年   40篇
  2000年   31篇
  1999年   44篇
  1998年   39篇
  1997年   27篇
  1996年   32篇
  1995年   32篇
  1994年   26篇
  1993年   18篇
  1992年   29篇
  1991年   15篇
  1990年   21篇
  1989年   11篇
  1988年   14篇
  1987年   11篇
  1986年   10篇
  1985年   10篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有7119条查询结果,搜索用时 15 毫秒
101.
Seaweed extracts of Sargassum cinereum was used as a reducing agent in the eco-friendly extracellular synthesis of silver nanoparticles from an aqueous solution of silver nitrate (AgNO3). High conversion of silver ions to silver nanoparticles was achieved with a reaction temperature of 100° and a seaweed extract concentration of 10% with a residential time of 3 h. Formation of silver nanoparticles was characterised by spectrophotometry and the scanning electron microscope. The average particles size was ranging from 45 to 76 nm. Antimicrobial activities indicate the minimum inhibitory concentration of biologically synthesised nanoparticles tested against the pathogen Staphylococcus aureus with 2.5 μl (25 μg/disc). High inhibitions over the growth of Enterobacter aerogenes, Salmonella typhi and Proteus vulgaris were witnessed against the concentrations of 100 μg/disc. Promising potential and the future prospects of S. cinereum nanoparticles in pharmaceutical research are the highlights in this paper.  相似文献   
102.
The purpose of this study was to use agar as a multifunctional encapsulating material to allow drug and ferromagnetism to be jointly delivered in one nanoparticle. We successfully encapsulated both Fe3O4 and doxorubicin (DOX) with agar as the drug carrier to obtain DOX-Fe3O4@agar. The iron oxide nanoparticles encapsulated in the carrier maintained good saturation of magnetization (41.9 emu/g) and had superparamagnetism. The heating capacity test showed that the specific absorption rate (SAR) value was 18.9 ± 0.5 W/g, indicating that the ferromagnetic nanoparticles encapsulated in the gel still maintained good heating capacity. Moreover, the magnetocaloric temperature could reach 43 °C in a short period of five minutes. In addition, DOX-Fe3O4@agar reached a maximum release rate of 85% ± 3% in 56 min under a neutral pH 7.0 to simulate the intestinal environment. We found using fluorescent microscopy that DOX entered HT-29 human colon cancer cells and reduced cell viability by 66%. When hyperthermia was induced with an auxiliary external magnetic field, cancer cells could be further killed, with a viability of only 15.4%. These results show that agar is an efficient multiple-drug carrier, and allows controlled drug release. Thus, this synergic treatment has potential application value for biopharmaceutical carrier materials.  相似文献   
103.
Silver nanoparticle (nAg)-embedded poly(vinyl pyrrolidone) (PVP) hydrogels, to be used as antibacterial wound dressings, were prepared by γ-irradiation at various doses: 25, 35, and 45?kGy. The formation and characteristics of the silver nanoparticles were investigated with a UV–vis spectrophotometer, transmission electron microscopy, and scanning electron microscopy with energy-dispersive X-ray. The hydrogels were characterized for physical and biological properties. Based on the antibacterial determination, the 1 and 5?mM nAg–embedded PVP hydrogels were effective, with 99.99% bactericidal activity at 12 and 6?h, respectively. The indirect cytotoxicity evaluation based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated that both the neat and the nAg-embedded PVP hydrogels were non-toxic to mouse fibroblasts (L929). The 5?mM nAg-embedded PVP hydrogels not only provided a clean, moist environment for wound healing, but also effectively prevented bacterial infection and enhanced wound recovery.  相似文献   
104.
Using plant bio-components for Designing green metal nanoparticles was considered as one of the most important methods in nanomedical application field due to their eco-friendly, cheap source, easily obtainable and having a high detection result. In this report, we fabricated eco-friendly engineering and cost-effective technique for green selenium nanoparticles from 0.01 M H2SeO3 solution using Asteriscus graveolens leaves extract as reducing and a capping agent at ambient temperature. Spectral techniques have been used to identify the formatted Selenium nanoparticles such as UV–Vis, pH, XPs, FT-IR, XRD, LDS, Z.P, EDS, TEM and AFM spectroscopy, which showed a size of 20 nm with spherical shape. Herein, the multi-effect of decorated Se-NPs surface have been evaluated, firstly on the hemolysis that showed completely hemocompatibility. Cytotoxicity assay showed that Se-NPs have a high selective effect on the HepG2 apoptosis and which proved by phase-contrast microscopy. Furthermore, the effect of nanoparticles on the action of the mechanism internal revealed that Se-NPs significantly and rapidly increased the level of reactive oxygen species and lipid peroxidation, while caused decreased the potential of mitochondrial membrane and glutathione level, which they together responsible on regulating the HepG2 cells fate. Furthermore, Flow cytometry analysis gave high values about S and G2/M phases of cell cycle resulting from Se-NPs effectiveness. In the end, with all the recorded information that has been measured in this study, this report provides a suitable and effective pathway for the green fabrication of Se-NPs decorated by biomolecules having high anticancer inhibited.  相似文献   
105.
Titanium dioxide nanoparticles (NpTiO2) are the most widely-used nanoparticle type and the adsorption of metals such as lead (PbII) onto their surface is a major source of concern to scientists. This study evaluated the effects of the associated exposure to both types of contaminant, i.e., lead (a known genotoxic metal) and NpTiO2, in a freshwater fish (Astyanax serratus) through intraperitoneal injection for an acute assay of 96 h. The effects of this exposure were evaluated using the comet assay, DNA diffusion assay and piscine micronucleus test, as well as the quantification of antioxidant enzymes (SOD, CAT, and GST) and metallothioneins. Our findings indicate that co-exposure of PbII with NpTiO2 can provoke ROS imbalances, leading to DNA damage in the blood and liver tissue of A. serratus, as well as modifying erythropoiesis in this species, inducing necrosis and changing the nuclear morphology of the erythrocytes.  相似文献   
106.
Low sensitivity of tumor tissue, targeting and sustained release of the drug are bottlenecks of the effect of chemotherapy on hepatocellular carcinoma. In this study, we used the ribosome display technology to screen human anti-VEGFR 2-single-chain antibody (ScFv) that could target directly to VEGFR2, and nanotechnology to prepare As2O3-nanoparticles. Then we built anti-VEGFR-2ScFv-As2O3-stealth nanoparticles using molecular coupling technology, which significantly increased anti-tumor effect while reducing toxicity. The in vivo tissue targeting distribution and anti-tumor effects of the anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles were investigated. Our results showed that anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles could inhibit the development of liver cancer xenograft as a targeting agent and also significantly inhibit angiogenesis.  相似文献   
107.
Gold nanoparticles (AuNPs) have been previously shown to induce gut dysbiosis during colitis in mice, but the underlying mechanism is not clear yet. Here, we evaluated the effects of AuNPs (5?nm diameter, coated with tannic acid, polyvinylpyrrolidone or citrate) on H2O2 accumulation and pathogen antagonization by an intestinal strain of Lactobacillus gasseri under aerobic cultural conditions. AuNPs (0.65?μg/mL) reduced over 50% of H2O2 accumulation by L. gasseri, and significantly inhibited the antagonistic action of L. gasseri on growth of four foodborne enteric pathogens, i.e. Salmonella enterica serovar Typhimurium, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus in associative cultures.  相似文献   
108.
The aim of this experimental work was to evaluate deposition of titanium dioxide (TiO2) microparticles and nanoparticles, which could originate from titanium bioimplants, in the gingiva. Wistar rats were injected intraperitoneally (i.p.) with a suspension of TiO2 particles of different sizes (150, 10, or 5 nm). The rats were killed 12 months post‐injection, and the buccal and lingual gingivae were resected and evaluated using light and scanning electron microscopy. Energy‐dispersive X‐ray spectroscopy (EDS) was used to confirm the presence of titanium in deposits of microparticles and nanoparticles, and the concentration of titanium in tissues was measured using inductively coupled plasma–mass spectrometry (ICP‐MS). Histological examination showed that all experimental groups exhibited agglomerates, in the gingiva, of titanium particles of micrometer size range, with no associated inflammatory response. Higher concentrations of titanium traces were shown, by ICP‐MS, in both buccal and lingual tissues of all experimental groups compared with their matched controls. Titanium concentrations were significantly higher in the buccal gingiva than in the lingual gingiva, and after injection with 5‐nm particles than with 10‐nm particles in both localizations. Titanium microparticles and nanoparticles deposit in the gingiva, and mostly on the buccal side. Gingival deposition of titanium could be considered a tissue indicator of tribocorrosion processes of titanium bioimplants.  相似文献   
109.
Introduction: Human immune-deficiency virus (HIV) infection causing acquired immune-deficiency syndrome (AIDS) is one of the most life-threatening infections. The central nervous system (CNS) is reported to be the most important HIV reservoir site where the antiretroviral drugs are unable to reach.

Areas covered: This article includes the review about HIV infections, its pathogenesis, HIV infections in CNS, its consequences, current therapies, challenges associated with the existing therapies, approaches to overcome them, CNS delivery of drugs – barriers, transport routes, approaches for transporting drugs across the blood–brain barrier, nasal route of drug delivery, and nose to brain targeting of antiretroviral agents as a potential approach for complete cure of AIDS.

Expert opinion: Various approaches are exploited to enhance the drug delivery to the brain for various categories of drugs. However, very few have investigated on the delivery of antiretrovirals to the brain. Targeting antiretrovirals to CNS through oral/nasal routes along with oral/parenteral delivery of drug to the plasma can be a promising approach for an attempt to completely eradicate HIV reservoir and cure AIDS, after clinical trials. Further research is required to identify the exact location of the HIV reservoir in CNS and developing good animal models for evaluation of different newly developed formulations.  相似文献   

110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号