首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   733篇
  免费   61篇
  国内免费   9篇
儿科学   1篇
妇产科学   9篇
基础医学   74篇
口腔科学   9篇
临床医学   115篇
内科学   135篇
皮肤病学   5篇
神经病学   48篇
特种医学   8篇
外科学   30篇
综合类   45篇
预防医学   21篇
眼科学   3篇
药学   277篇
中国医学   9篇
肿瘤学   14篇
  2023年   6篇
  2022年   8篇
  2021年   30篇
  2020年   13篇
  2019年   35篇
  2018年   37篇
  2017年   36篇
  2016年   47篇
  2015年   31篇
  2014年   50篇
  2013年   163篇
  2012年   53篇
  2011年   41篇
  2010年   28篇
  2009年   41篇
  2008年   28篇
  2007年   21篇
  2006年   21篇
  2005年   20篇
  2004年   16篇
  2003年   14篇
  2002年   9篇
  2001年   11篇
  2000年   14篇
  1999年   5篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
排序方式: 共有803条查询结果,搜索用时 812 毫秒
751.
The augmentation of ultrasound-induced clot disruption by echocardiographic contrast microbubbles may be a direct mechanical erosive effect of the clot by the microparticles. To further assess this hypothesis, we evaluated the rate and extent of clot disruption by using external ultrasound and nongas-filled microparticles (HAEMACCEL and HAES). Human blood clots were used in this in vitro study. The percent clot reduction using the combination of ultrasound and microparticles was dose dependent and significantly higher than that with microparticles alone.  相似文献   
752.
Supercritical fluids crystallization of budesonide and flunisolide   总被引:2,自引:0,他引:2  
Purpose: Budesonide and flunisolide anhydrate were crystallized using the solution enhanced dispersion by supercritical fluids (SEDS) technique. The aim was to investigate the possibility of preparing different pure polymorphs. Methods: 0.25% w/v solutions of each drug were prepared from acetone and methanol. Operating conditions were 40-80°C and 80-200 bars. The flow rate of drug solution was 0.3 mL/min and that of CO2 was 9-25 mL/min. Sample characterizations included differential scanning calorimetry, X-ray powder diffraction, variable temperature X-ray diffraction, scanning electron microscopy, and solubility studies. Results: The particle morphology of budesonide was dependent on the nature of the solvent. SEDS processing of flunisolide with acetone at 100 bars resulted in the formation of polymorphic mixtures at 80°C and a new polymorph III at 60 C and 40°C. With methanol at 100 bars another new polymorph IV was formed with different particle morphology at 80°C and a polymorphic mixture at 60°C. Conclusion: Using the SEDS, microparticles of crystalline budesonide were prepared and new polymorphs of flunisolide were produced. Particle characteristics were controlled by the temperature, pressure and relative flow rates of drug solution and CO2.  相似文献   
753.
Drug delivery systems have wide biomedical applications owing to their distinct therapeutic advantages, such as controlled release of drugs over prolonged periods, protection against premature drug degradation, reduction in drug toxicity and drug–drug interactions. All these factors are important considerations in the treatment of chronic infectious diseases such as tuberculosis. In tuberculosis, patient non-compliance is a vexing problem which is responsible not only for treatment failure, but also for the emergence of multi-drug resistant cases. Alginate, a natural polymer, has attracted researchers owing to its ease of availability, compatibility with hydrophobic as well as hydrophilic molecules, biodegradability under physiological conditions, lack of toxicity and the ability to confer sustained release potential. It is not therefore surprising that the controlled release phenomenon of this polymer has been documented for a vast array of drugs. In particular, the ability of alginate to co-encapsulate multiple antitubercular drugs and offer a controlled release profile is likely to have a major impact in enhancing patient compliance for better management of tuberculosis.  相似文献   
754.
Introduction: One of the most common strategies for pain control during and after surgical procedures is the use of local anesthetics. Prolonged analgesia can be safely achieved with drug delivery systems suitably chosen for each local anesthetic agent.

Areas covered: This review considers drug delivery formulations of local anesthetics designed to prolong the anesthetic effect and decrease toxicity. The topics comprise the main drug delivery carrier systems (liposomes, biopolymers, and cyclodextrins) for infiltrative administration of local anesthetics. A chronological review of the literature is presented, including details of formulations as well as the advantages and pitfalls of each carrier system. The review also highlights pharmacokinetic data on such formulations, and gives an overview of the clinical studies published so far concerning pain control in medicine and dentistry.

Expert opinion: The design of novel drug delivery systems for local anesthetics must focus on how to achieve higher uploads of the anesthetic into the carrier, and how to sustain its release. This comprehensive review should be useful to provide the reader with the current state-of-art regarding drug delivery formulations for local anesthetics and their possible clinical applications.  相似文献   
755.
ABSTRACT

Objective: Oral insulin administration suffers gastrointestinal tract (GIT) degradation and inadequate absorption from the intestinal epithelium resulting in poor bioavailability. This study entails in vitro and in vivo assessment of stimuli-responsive hydrogel microparticles (MPs) in an attempt to circumvent GI barrier and enhance oral insulin bioavailability.

Methods: Bacterial cellulose-g-poly(acrylic acid) (BC-g-P(AA)) hydrogel MPs were evaluated for morphology, swelling, entrapment efficiency (EE), in vitro insulin release and enzyme inhibition. The ex vivo mucoadhesion, insulin degradation and transport were investigated in excised intestinal tissues. The effect of MPs on paracellular transport was studied in Caco-2/HT29-MTX monolayers. The in vivo hypoglycemic effect and pharmacokinetics of insulin-loaded MPs were investigated in diabetic rats.

Results: Hydrogel MPs efficiently entrapped insulin (EE up to 84%) and exhibited pH-responsive in vitro release. The MPs decreased the proteolytic activity of trypsin (up to 60%). Insulin transport across monolayers was increased up to 5.9-times by MPs. Histological assessment of GI tissues confirmed the non-toxicity of MPs. Orally administered insulin-loaded MPs showed higher hypoglycemic effect as compared to insulin solution and enhanced relative oral bioavailability of insulin up to 7.45-times.

Conclusion: These findings suggest that BC-g-P(AA) MPs are promising biomaterials to overcome the barriers of oral insulin delivery and enhancing its bioavailability.  相似文献   
756.
Abstract

A multiphase emulsification technique was modified in this process of microencapsulating gentamicin sulphate, thus avoiding the necessity for a surfactant in preparing the secondary emulsion for a W/O/W emulsion. Various proportions of iota-carrageenan (i-C) and locust bean gum (LBG) were investigated for the W/O/W emulsion after forming the primary W/O emulsion with sorbitan trioleate, Span 85. Upon removal of the oil phase (chloroform) from the W/O/W emulsion by heating (60-65°C), microcapsules or ‘W/W particles containing drug dissolved in sodium hyaluronate were spontaneously formed. These were dispersed in a solution of a mixture of 5-10 per cent w/v polyvinyl alcohol, PVA (average MW 50000-106000; 98 per cent hydrolysed) and 3 per cent v/v polyethylene glycol 200 (PEG 200), and dried to form the hydrogel film casts. Our in vitro experiments in isotonic phosphate buffer solution (pH 7-4) at 37°C., showed that the release of gentamicin sulphate was dependent on concentration of LBG, and concentration or molecular weight of PVA. With the exception of PVA hydrogel matrix preparations containing 20 per cent w/v LBG, all other formulations showed a significant initial ‘burst' release of drug within 6h. The drug-containing microcapsules in the PVA hydrogel film with 20 per cent w/v LBG, exhibited an almost zero-order release of drug up to 140h. It is postulated that an effective barrier or high-density membrane enveloping the microcapsules was formed between i-C and LBG because of their unique molecular configurations. This phenomenon, together with the possible adsorption of i-C molecules at the transient oil and outer aqueous phase interface, presumably eliminated the need for a permanent oil phase and/or an O/W surfactant normally required for preparing W/O/W emulsions.  相似文献   
757.
Celecoxib, a selective COX-2 inhibitor, primarily used in treatment of osteoarthritis, rheumatoid arthritis and acute pain was encapsulated in microparticles composed of various polyesters, polymethacrylates or cellulose derivatives used alone or blended. The influence of polymers on microparticle mean diameter, encapsulation efficiency and in vitro and in vivo celecoxib release was investigated. Microparticles were in the size range 11–37?µm. Encapsulation efficiency was optimal due to poor aqueous solubility of celecoxib. Considering in vitro release, microparticles could be divided into drug delivery systems with fast and slow release profiles. Microparticles prepared with poly-ε-caprolactone, Eudragit® RS and low viscosity ethylcellulose, together with physical mixture of celecoxib with lactose and Celebrex®, were tested in vivo. Relative bioavailability of celecoxib was below 20% in all cases and was probably the consequence of a slow in vivo release of celecoxib from microparticles or low wettability in the case of Celebrex® and physical mixture.  相似文献   
758.
Insulin-loaded poly(lactide) (PLA) microparticles were successfully prepared by 6% w/v PLA in the organic phase, 10% w/v PVP and varied types of 5%w/v electrolytes in the continuous phase, by using a water-in-oil-in-water emulsion/solvent extraction technique. Addition of electrolytes such as NaCl, CaCl2 into the external phase significantly improved insulin entrapment efficiency compared to the case of no additives. NaCl was the most effective for obtaining high entrapment efficiency, with microparticle yield 81.2%, trapping efficiencies 49%, insulin-loading level 5.5% w/w and mean particle size 14.8?µm. The distribution (%) of insulin on the PLA microparticles surface, outer layer and core were 8, 37 and 43%, respectively. The cumulative release of insulin had an upper limit of ~24% of the insulin load at 24 days. A steady release rate was 0.5?µg insulin/mg microparticles/day of insulin release maintained for 24 days. Total protein-leaking amount was reduced after addition of electrolytes in the continuous aqueous phase. Rabbit glucose levels were evaluated after subcutaneous 20?mg insulin-loaded PLA microparticles or PLA blank microparticles. Study results show that the insulin-loaded PLA microparticles significantly reduced the glucose level than PLA blank microparticles. The insulin-loaded PLA microparticles, physicochemical characterization data and the animal result obtained in this study may be relevant in optimizing the PLA microparticle formulation incorporation and delivery insulin carriers.  相似文献   
759.
Abstract

Encapsulation of amoxicillin (AMC) with ethyl cellulose (EC) by a supercritical antisolvent process (SAS) was investigated. AMC microparticles obtained previously by an SAS process were used as host particles and EC, a biodegradable polymer used for the controlled release of drugs, was chosen as the coating material. In this work, a suspension of AMC microparticles in a solution of ethyl cellulose in dichloromethane (DCM) was sprayed through a nozzle into supercritical CO2. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and HPLC analyses were carried out. The effects of AMC:EC ratio, the initial polymer concentration of the solution, temperature and pressure on the encapsulation process were investigated. Although all the experiments led to powder precipitation, the AMC encapsulation was achieved in only half of the cases, particularly when the lower drug:polymer ratios were assayed. In general, it was observed that the percentages of AMC present in the precipitates were higher on increasing the AMC:EC ratio. In these cases composites rather than encapsulates were obtained. The in vitro release profiles of the resulting materials were evaluated in order to ascertain whether composites can be used as encapsulated systems for drug delivery systems.  相似文献   
760.
Abstract

In this study, ciprofloxacin hydrochloride (CIP)-loaded poly-ε-caprolactone (PCL) nanoparticles were prepared for pulmonary administration. CIP-loaded PCL nanoparticles were prepared using solid-in-oil-in-water (s/o/w) emulsion solvent evaporation method, and the effects of various formulation parameters on the physicochemical properties of the nanoparticles were investigated. PCL nanoparticles showed spherical shapes with particle sizes around 143–489?nm. Encapsulation efficiency was found to be very low because of water-solubility properties of CIP. However, the surface modification of nanoparticles with chitosan caused an increase in the encapsulation efficiency of nanoparticles. At drug release study, CIP-loaded PCL nanoparticles showed initial burst effect for 4?h and then continuously released for 72?h. Nanocomposite microparticles containing CIP-loaded PCL nanoparticles were prepared freeze-drying method and mannitol was used as carrier material. Tapped density and MMADt results show that nanocomposite microparticles have suitable aerodynamic properties for pulmonary administration. Antimicrobial efficacy investigations showed that CIP-encapsulated PCL nanoparticles and nanocomposite microparticles inhibited the growth of bacteria. Also, when the antimicrobial activity of the nanoparticles at the beginning and at the sixth month was examined, it was found that the structure of the particulate system was still preserved. These results indicated that nanocomposite microparticles containing CIP-loaded PCL nanoparticles can be used for pulmonary delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号