首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   7篇
  国内免费   1篇
耳鼻咽喉   2篇
妇产科学   1篇
基础医学   6篇
口腔科学   3篇
临床医学   6篇
内科学   9篇
皮肤病学   1篇
神经病学   8篇
特种医学   2篇
外科学   6篇
综合类   27篇
预防医学   8篇
药学   3篇
中国医学   14篇
肿瘤学   4篇
  2022年   4篇
  2020年   5篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   6篇
  2010年   7篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1973年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
51.
血管性痴呆是导致痴呆的第二大疾病。现代医学对痴呆的治疗仅是改善症状、缓解疾病进展,而不能从根本上治疗疾病。中医药在血管性痴呆诊治中发挥着重大作用,能从整体上改善机体的一般情况及周边症状。目前对血管性痴呆的中医药研究日渐深入。当代各医家论治经验丰富了传统中医痴呆理论。病因辨证上,或从虚而论,或从瘀而论,或从毒而论。脏腑辨证上,心、肝、脾胃、肺、肾等分而论之。就近10年来老中医论治经验做如下简要总结。  相似文献   
52.
动物药是中医药体系中的重要组成部分,近年来,随着制药业的发展,制剂新技术的运用,许多动物药突破了自身理化性质的限制,充分发挥药效,预示着动物药的广阔发展前景。对动物药的历史概况、研究现状及前景展望作一综述。  相似文献   
53.
[Clin Psychol Sci Prac 18: 208–214, 2011] This is a commentary on Haynos and Fruzzetti (2011) . The commentary begins with a discussion of how emotion has been included in the conceptualization of anorexia nervosa (AN) for some time, although this has not culminated into an experimental science on somatic‐affective arousal in this patient population. Important gaps in our knowledge of how individuals with AN experience signals from the body (including emotion) are highlighted, as is the lack of attention in the Haynos and Fruzzetti model to differences in emotional experience in the acute and chronic stages of the illness. Final comments are made about the focus of AN intervention, specifically how the functional significance of the symptoms can be an afterthought because of the need to restore nutrition, and the utility of identifying common and distinct processes across eating disorder diagnoses.  相似文献   
54.
石瘕症治疗探讨   总被引:3,自引:0,他引:3  
本文对石瘕症从理论与临床进行了探讨。石瘕症名出自《黄帝内经》,因寒凝、血瘀留止于宫内形成结块,属妇科疾病,治以消导通下。现代研究无论是病因病机还是治疗都跳出了寒凝血瘀、活血化瘀的单一模式。可以说,石瘕症包括了以子宫肌瘤为主的妇科疒徵瘕病等,按中医理论辨证论治,对提高临床疗效、降低手术率具有很大的意义。  相似文献   
55.
Caring seems to be undervalued in the technologically‐advanced and fast‐paced clinical environment. To improve nursing practice, it is important to understand the meanings of caring to nurses. The aim of the present study was to explore nurses' perspectives of caring in the contemporary clinical environment. A focus group exploration was employed. Multiple perspectives were elicited from 80 nurses with different backgrounds: nursing students, nurse educators, registered nurses, advanced clinical nurses, and nurse executives. The qualitative data were analyzed using thematic analysis. Nurses' understanding of caring could be described using four Es: engaging in reciprocal relationships, embracing the essence of caring, engendering instances of caring, and embodying caring in practice. Participants described nurses as having the dual roles of caregiver and care recipient. The centrality of caring in nursing and the necessity of caring for caregivers were emphasized. The nurses also described various caring behaviors in daily practice. The present study revealed that nurses need empowerment to sustain their compassion. The findings provide new insights, which indicate that the revitalization of nurses' passion for caring in the contemporary clinical environment should begin with caring for caregivers.  相似文献   
56.
Substitution of the four paraphenyl hydrogens of iron tetraphenylporphyrin by trimethylammonio groups provides a water-soluble molecule able to catalyze the electrochemical conversion of carbon dioxide into carbon monoxide. The reaction, performed in pH-neutral water, forms quasi-exclusively carbon monoxide with very little production of hydrogen, despite partial equilibration of CO2 with carbonic acid—a low pKa acid. This selective molecular catalyst is endowed with a good stability and a high turnover frequency. On this basis, prescribed composition of CO–H2 mixtures can be obtained by adjusting the pH of the solution, optionally adding an electroinactive buffer. The development of these strategies will be greatly facilitated by the fact that one operates in water. The same applies for the association of the cathode compartment with a proton-producing anode by means of a suitable separator.One of the most important issues of contemporary energy and environmental challenges consists of reducing carbon dioxide into fuels by means of sunlight (13). One route toward this ultimate goal is to first convert solar energy into electricity, which will then be used to reduce CO2 electrochemically. Direct electrochemical injection of an electron into the CO2 molecule, forming the corresponding anion radical CO2.− requires a very high energy [the standard potential of the CO2/ CO2.− couple is indeed −1.97 V vs. normal hydrogen electrode (NHE) in N,N′dimethylformamide (DMF)] (4, 5). Electrochemical conversion of CO2 to any reaction product thus requires catalytic schemes that preferably avoid this intermediate. Carbon monoxide may be an interesting step en route to the desired fuels because it can be used as feedstock for the synthesis of alkanes through the classic Fischer–Tropsch process. A number of molecular catalysts for the homogeneous electrochemical CO2-to-CO conversion have been proposed. They mainly derive from transition metal complexes by electrochemical generation of an appropriately reduced state, which is restored by the catalytic reaction. So far, nonaqueous aprotic solvents (mostly DMF and acetonitrile) have been used for this purpose (516). Brönsted acids have been shown to boost catalysis. However, they should not be too strong, at the risk of leading to H2 formation at the expense of the CO. Trifluoroethanol and water (possibly in large amounts) have typically played the role of a weak acid in the purpose of boosting catalysis while avoiding hydrogen evolution.One of the most thoroughly investigated families of transition-metal complex catalysts of CO2-to-CO conversion is that of iron porphyrins brought electrochemically to the oxidation degree 0. The importance of coupling electron transfer and introduction of CO2 into the coordination sphere of iron with proton transfers required by the formation of CO, CO2 + 2e + 2AH ↔ CO + H2O + 2A, appeared from the very beginning of these studies. Sustained formation of CO was indeed only achieved upon addition of weak Brönsted (1719) and Lewis acids (20, 21). Such addition of Brönsted acids, however, opens the undesired possibility that the same catalyst that converts CO2 into CO may also catalyze the reduction of the acid to dihydrogen. This is indeed what happens with Et3NH+ as the acid, limiting the set of acids used for the CO2-to-CO conversion to that of very weak acids such as propanol, water, and, the strongest one, trifluorethanol (22). Since then, the range of acidity has been extended to phenols, which proved compatible with CO faradic yields close to 100% (23, 24). Installation of phenol functionalities in the porphyrin molecules (Scheme 1) even allowed a considerable improvement of catalysis in terms of catalytic Tafel plots (turnover frequency vs. overpotential) with no degradation of the CO (vs. H2) faradaic yield (2527). The problem should, however, resurface upon going to stronger acids. That competition with hydrogen evolution is a general issue for molecular catalysis of the CO2-to-CO conversion is confirmed by recent findings concerning catalysts derived from terpyridine complexes of first-row transition metals in (90:10, vol:vol) DMF/H2O mixtures (28).Open in a separate windowScheme 1.Iron-porphyrin catalysts for CO2-to-CO electrochemical conversion.The results thus obtained in nonaqueous or partially aqueous media enabled the discovery of remarkably efficient and selective catalysts of the CO2-to-CO conversion. They were also the occasion of notable advances in terms of mechanisms and theory of concerted bond-breaking proton–electron transfer (29).It must, however, be recognized that, from the point of view of practical applications, the use of nonaqueous solvents is not the most exciting aspect of these results. One would rather like to use water as the solvent, which would render more viable the CO2-to-CO half-cell reaction as well as its association with a water-oxidation anode through a proton-exchange membrane. Several approaches are conceivable in this respect. One of these consists of coating the electrode with a film, possibly making use of the water insolubility of the catalyst (see the three last entries of table 3 in ref. 5, refs. 30 and 31, and ref. 32 and references therein). One may also attempt to chemically attach catalyst molecules onto the electrode having in mind their use, or possible use, of the resulting films in water (33, 34).Our approach consisted of devising a catalyst fully soluble in water and able to convert CO2 to CO selectively as well as efficiently with regard to overpotential and turnover frequency. Full solubility in water, indeed, allows an easy manipulation of pH and buffering of the system. It will also help the design of a full cell associating the cathode compartment with a proton-producing anode by means of a suitable separator (35). The challenges ahead in this endeavor were as follows. CO2 is poorly soluble in water ([CO2] = 0.0383 M) (36). Even more seriously, it is partially converted (Khydration = 1.7 × 10−3) into carbonic acid, CO3H2, which has a first ionization pKa of 3.6, that is, an apparent pKa of 6.4 (36). These features make it a priori possible that the CO2-to-CO conversion might be seriously challenged by H2 evolution from reduction of carbonic acid and/or hydrated protons (37, 38). Indeed, a previous attempt showed poor CO2/H2 selectivity and practically no catalytic effect in cyclic voltammetry (37). In the same vein, Ni cyclam seems to be a selective and efficient catalyst of the CO2-to-CO conversion in water under the condition of being operated with a mercury electrode, pointing to favorable specific interactions of the catalytic species with the mercury surface (38, 39), whereas the use of a carbon electrode leads to much less efficiency in terms of rate (maximal turnover frequency of 90 s−1) and turnover (four cycles) (15).We have found that the iron tetraphenylporphyrin in which the four paraphenyl hydrogens have been substituted by trimethylammonio groups, hereafter designated as WSCAT (Scheme 1), fulfills these stringent requirements at neutral pHs.As seen in Fig. 1A, a very high catalytic current is observed in cyclic voltammetry of half a millimolar solution of WSCAT saturated with CO2 at pH 6.7. In the absence of CO2 (Fig. 1B) three successive waves are observed when starting from the FeIII complex with Cl as counter ions and presumably as axial ligand. As expected, the shape of the first, FeIII/II, wave reflects the strong axial ligation by Cl (40). The second wave is a standard reversible FeII/I wave. The third wave is the wave of interest for catalysis. It is irreversible, as opposed to what is observed in DMF (Fig. 1C), where all three waves are one-electron reversible waves, including the third FeI/0 wave, as with the simple FeTPP (Scheme 1) (see, e.g., refs. 23 and 24). The irreversibility and somewhat increased current observed here in water presumably reflects some catalysis of H2 evolution from the reduction of water. The considerable increase in current observed in the FeI/0 potential region when CO2 is introduced into the solution is a clear indication that catalysis is taking place. It is roughly similar to what has been observed in DMF under 1 atm CO2 in the presence of a weak acid such as phenol (Fig. 1D and refs. 23 and 24).Open in a separate windowFig. 1.Cyclic voltammetry of 0.5 mM WSCAT at 0.1 V/s, temperature 21 °C. (A) In water + 0. 1 M KCl brought to pH 6.7 by addition of KOH under 1 atm CO2. (B) Same as A but in the absence of CO2. (C) Same as B but in DMF + 0.1 n-Bu4NBF4. (D) Same as C but under 1 atm CO2, and presence of 3 M phenol.What is the nature of the catalysis observed in the FeI/0 potential region? Does it involve acid reduction (CO3H2 and/ or H+) or conversion of CO2 into one of the reduction products? The answer is given by the results of preparative-scale electrolyses.A first series of preparative-scale electrolyses was performed at −0.97 V vs. NHE over electrolysis times between 1 and 4 h. The pH was brought to 6.7 by addition of KOH. The current density was ca. 0.1 mA/cm2 in all cases. CO was found to be largely predominant with formation of only a very small amount of hydrogen. Over five of these experiments the average faradaic yields of detected products were as follows: CO, 90%; H2, 7%; acetate, 1.4%; formate, 0.7%; and oxalate, 0.5%. The catalyst was quite stable during these periods of time. The variation of pH during electrolysis was small, passing from 6.7 to 6.9. The decrease in peak current registered before and after electrolysis was less than 5%.A longer-duration electrolysis (Fig. 2) was carried out at a somewhat less negative potential, −0.86 V vs. NHE, leading to a quasi-quantitative formation of CO (faradaic yield between 98% and 100%). After 72 h of electrolysis, the current was decreased by approximately half but CO continued to be the only reaction product.Open in a separate windowFig. 2.Electrolysis of a 0.5 mM WSCAT solution in water + 0.1 M KCl brought to pH 6.7 by addition of KOH under 1 atm CO2 at −0.86 V vs. NHE. Temperature 21 °C. The reaction products were analyzed at the end of each day. Charge passed (Top); current density (Bottom).As an example of pH manipulation, the addition of a 0.1 M formic acid buffer at pH 3.7 resulted in the exclusive formation of hydrogen. With a 0.1 M phosphate buffer adjusted at the same pH, 6.7, as that where the electrolyses with no additional buffer were carried out, a 50–50 CO–H2 mixture was obtained.Although deserving a precise kinetic analysis, a likely interpretation of the factors favorable to CO formation against H2 evolution is summarized in Scheme 2. Despite Fe0 porphyrins’ being good catalysts of H2 evolution (22), the fact that the reaction that converts CO2 into CO3H2 is thermodynamically uphill and kinetically slow favors the CO-formation pathway, making it able to resist the fast H2 evolution pathway in pH-neutral media. Another favorable factor is the wealth of H-bonding possibilities offered by water, a factor that has been shown to be quite important in stabilizing the primary Fe0–CO2 adduct and therefore in boosting catalysis as transpires from the results obtained with OH-substituted tetraphenylporphyrins CAT and FCAT (Scheme 1) (2527). Addition of a buffer, such as phosphate in 0.1 M concentration, opens an additional catalytic pathway for H2 evolution able to compete with the CO-formation pathway even if the pH is kept at the same neutral value. Indeed, along this pathway, the delivery of protons (by PO4H2) is not under a stringent kinetic limitation as it is in the pathway represented in Scheme 2. It is nevertheless clear that a future detailed mechanistic and kinetic investigation of the effect of pH changes in buffered and nonbuffered media is clearly warranted, based on cyclic voltammetry and determination of the CO and H2 faradaic yields.Open in a separate windowScheme 2.Competition between CO formation and H2 evolution.In view of the paucity of data concerning homogeneous molecular catalysis of the CO2-to-CO conversion in water, benchmarking with other catalysts in terms of overpotential and turnover frequency does not seem possible at the moment. We may just note that a preliminary estimation of the maximal turnover frequency through the foot-of-the-wave analysis (discussed below) leads to the exceptionally high figure of 107 s−1 (i.e., a second-order rate constant of 2.5 × 108 M−1⋅s−1).We are thus led to make the comparison with the characteristics of other catalysts obtained in an aprotic solvent such as DMF or acetonitrile, starting from the results shown in Fig. 1 C and D. The standard potential of the FeI/Fe0 couple in DMF (Fig. 1C) is −1.23 V vs. NHE. A systematic analysis of the wave obtained under 1 atm CO2 and presence of 3 M phenol was carried out according to the foot-of-the wave approach, which aims at minimizing the effects of side phenomena that interfere at large catalytic currents. This technique has been previously described in detail and successfully applied in several instances (2327). It was applied here, assuming that the reaction mechanism is of the same type as for FeTPP in the presence of phenol (Scheme 3) (24).Open in a separate windowScheme 3.Likely mechanism of the CO2-to-CO conversion pathway.Combination of the foot-of-the wave analysis with increasing scan rates, which both minimize the effect of side phenomena (2327), allowed the determination of the turnover frequency as a function of the overpotential, leading to the catalytic Tafel plot for the WSCAT catalyst shown as the red curve in Fig. 3. The turnover frequency, TOF, takes into account that the molecules that participate in catalysis are only those contained in the thin reaction-diffusion layer adjacent to the electrode surface in pure kinetic conditions (23, 24). The overpotential, η, is the difference between the standard potential of the reaction to be catalyzed and the electrode potential. Correlations between TOF and η provide catalytic Tafel plots that are able to benchmark the intrinsic properties of the catalyst independently of parameters such as cell configuration and size. Good catalysts appear in the upper left corner and bad catalysts in the bottom right corner of Fig. 3. These plots allow one to trade between the rapidity of the catalytic reaction and the energy required to run it. The other Tafel plots shown in Fig. 3 are simply a repetition of what has been established in detail in ref. 24.Open in a separate windowFig. 3.Catalytic Tafel plots in DMF or acetonitrile. See ref. 27 for details and references.It clearly appears that WSCAT is the best catalyst of the set of molecules represented in Fig. 3. It is expected that the electron-withdrawing properties of the para-N-trimethylammonium groups leads to a positive shift of the FeI/Fe0 couple, being thus a favorable factor in terms of overpotential (positive shifts of 200 mV vs. FeTPP, 100 mV vs. CAT, and 40 mV vs. FCAT). What is more surprising is that this effect, which tends to decrease the electron density on the iron and porphyrin ring at the oxidation state 0, does not slow down the catalytic reaction to a large extent. Systematic analysis of the factors that control the standard potential and the catalytic reactivity as a function of the substituents installed on the porphyrin ring is a clearly warranted future task.For the moment, we may conclude that substitution of the four parahydrogens of FeTPP by trimethylammonium groups has produced a water-soluble catalyst that is able, for the first time to our knowledge, to catalyze quantitatively the conversion of carbon dioxide into carbon monoxide in pH-neutral water with very little production of hydrogen. This seems a notable result in view of the hydration of CO2, producing carbonic acid—a low pKa acid—the catalytic reduction of which, and/or of the hydrated protons it may generate, into hydrogen might have been a serious competing pathway. Although a number of mechanistic details should be worked out, this notable result seemingly derives not only from the relatively small value of the hydration constant but also from the slowness of this reaction. As judged from its performances in DMF, this catalyst moreover seems particularly efficient in terms of catalytic Tafel plots relating the turnover frequency to the overpotential. Manipulation of the pH under unbuffered conditions or by introduction of an additional buffer should open the way to the production of CO–H2 mixtures in prescribed proportions. The substitution by the four trimethylammonium groups ensured the water solubility of the catalyst. It may also be an adequate way of immobilizing it onto the electrode surface by means of a negatively charged polymer to be associated with a water-oxidation anode through a proton-exchange membrane.  相似文献   
57.
The development of classical and contemporary informatics, the cross-fertilization between computer science, software engineering, cognitive science, and neuropsychology, has led to a whole range of extremely interesting new research areas known as cognitive informatics. Cognitive informatics is the transdisciplinary study of cognitive and information sciences that investigates into the internal information processing mechanisms and processes of the natural intelligence--human brains and minds. Cognitive informatics is a branch of information and computer science that studies computing by cognitive methodologies and studies cognitive science by informatics and computing theories. Cognitive informatics is a cutting-edge and profound interdisciplinary research area that tackles the fundamental problems of modern informatics, computation, software engineering, artificial intelligence, cognitive science, neuropsychology, and life sciences. Almost all of the hard problems yet to be solved in the above areas share a common root in the understanding of mechanisms of natural intelligence and cognitive processes of the brain. Cognitive informatics is perceived as a new frontier that explores the internal information processing mechanisms of the brain, and their engineering applications in computing and the information technology industry.  相似文献   
58.
59.
60.
当代中医妇科名家学术思想源流探究   总被引:1,自引:0,他引:1  
当代中医妇科名家代表了该时代中医妇科的最高水平。文章以学术流派的形式对当代8位中医妇科名家的学术思想进行了整理研究,在探讨各流派自身特色的基础上,博采众长、反对门户之见,旨在寻求其学术的交融性、贯穿性。这对传承这些医家的理论思想,指导临床医生的工作,具有十分重要的意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号