首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1005篇
  免费   75篇
  国内免费   90篇
耳鼻咽喉   1篇
儿科学   1篇
妇产科学   2篇
基础医学   238篇
口腔科学   215篇
临床医学   111篇
内科学   125篇
皮肤病学   1篇
神经病学   40篇
特种医学   10篇
外科学   103篇
综合类   164篇
预防医学   16篇
眼科学   51篇
药学   76篇
中国医学   9篇
肿瘤学   7篇
  2024年   2篇
  2023年   7篇
  2022年   39篇
  2021年   50篇
  2020年   41篇
  2019年   22篇
  2018年   21篇
  2017年   27篇
  2016年   40篇
  2015年   31篇
  2014年   63篇
  2013年   192篇
  2012年   43篇
  2011年   68篇
  2010年   52篇
  2009年   46篇
  2008年   51篇
  2007年   44篇
  2006年   50篇
  2005年   49篇
  2004年   35篇
  2003年   38篇
  2002年   22篇
  2001年   24篇
  2000年   18篇
  1999年   12篇
  1998年   5篇
  1997年   9篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   9篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1979年   1篇
排序方式: 共有1170条查询结果,搜索用时 15 毫秒
41.
Novel lactide-based poly(ethylene glycol) (PEG) polymer networks (GL9-PEGs) were prepared by UV copolymerization of a glycerol-lactide triacrylate (GL9-Ac) with PEG monoacrylate (PEG-Ac) to use as scaffolds in tissue engineering, and the surface properties and biocompatibility of these networks were investigated as a function of PEG molecular weight and content. Analysis by ATR-FTIR and ESCA reveled that PEG was incorporated well within the GL9-PEG polymer networks and was enriched at the surfaces. From the results of SEM, AFM, and contact angle analyses, GL9-PEG networks showed relatively rough and irregular surfaces compared to GL9 network, but the mobile PEG chains coupled at their termini were readily exposed toward the aqueous environment when contacting water such that the surfaces became smoother and more hydrophilic. This reorientation and increase in hydrophilicity were more extensive with increasing PEG molecular weight and content. As compared to GL9 network lacking PEG, protein adsorption as well as platelet and S. epidermidis adhesion to GL9-PEG networks were significantly reduced as the molecular weight and content of PEG was increased, indicating that GL9-PEG networks are more biocompatible than the GL9 network due to PEG's passivity. Based on the physical and biological characterization reported, the GL9-PEG materials would appear to be interesting candidates as matrices for tissue engineering.  相似文献   
42.
Collagen-based materials can be designed for use as scaffolds for connective tissue reconstruction. The goal of the present study was to evaluate the behavior of collagen materials as well as cell and tissue reactions after the conjugation of activated polyethylene glycols (PEGs) with collagen. It is known that proteins conjugated with PEGs exhibit a decrease in their biodegradation rate and their immunogenicity. Different concentrations and molecular weights of activated PEGs (PEG-750 and PEG-5000) were conjugated to collagen materials (films or sponges) which were then investigated by collagenase assay, fibroblast cell culture, and subcutaneous implantation. PEG-conjugated collagen sponge degradation by collagenase was delayed in comparison to untreated sponges. In culture, fibroblasts with a normal morphology reached confluency on PEG-conjugated collagen films. In vivo, the porous structure of non-modified sponges collapsed by day 15 with a few observable fibroblasts between the collagen fibers. In PEG-modified collagen sponges, the porous structure remained stable for 30 days. Cell infiltration was particularly enhanced in PEG-750-conjugated collagen sponges. In conclusion, PEGs conjugated onto collagen sponges stabilize the porous structure without deactivating the biological properties of collagen. These porous composite materials could function as a scaffold to organize tissue ingrowth.  相似文献   
43.
IntroductionEndodontic sealers play a vital role in the obturation of root canal space. The aim of this study was to evaluate the utility of a recently developed polyurethane expandable sealer (PES), along with its cytotoxicity and dimensional changes.MethodsL929 fibroblasts and an cell viability assay (MTS assay) were used to determine the cytotoxicity of dental sealers (AH Plus [Dentsply Maillefer, Ballaigues, Switzerland], Sure-Seal Root [Sure Dent Corporation, Gyeonggi-do, South Korea], and the PES) at 24, 48, 72, and 96 hours. An advanced choroidal neovascularization model was used to assess the effect of these sealers on angiogenesis. Thirty-six extracted single-rooted human teeth were prepared and randomly divided into 3 groups (n = 12). Obturation was performed with gutta-percha and a sealer using lateral compaction as follows: group 1, AH Plus; group 2, Sure-Seal; and group 3, PES. The average depth of sealer penetration into dentinal tubules was measured with a scanning electron microscope. Data were analyzed using 1-way analysis of variance and post hoc Tukey tests (level of significance, P < .05).ResultsThe values of MTS, choroidal neovascularization, and the penetration depth of PES were significantly higher than in other experimental groups (P < .05). The lowest values were noted in specimens of AH Plus, whereas the highest were detected in the PES group.ConclusionsPES showed promising results in terms of biocompatibility and dentinal tubule adaptation and penetration.  相似文献   
44.
Background: The impact of a low-glucose peritoneal dialysis (PD) regimen on biomarkers of peritoneal inflammation, fibrosis and membrane integrity remains to be investigated.♦ Methods: In a randomized, prospective study, 80 incident PD patients received either a low-glucose regimen comprising Physioneal (P), Extraneal (E) and Nutrineal (N) (Baxter Healthcare Corporation, Deerfield, IL, USA) (PEN group), or Dianeal (control group) for 12 months, after which both groups continued with Dianeal dialysis for 6 months. Serum and dialysate levels of vascular endothelial growth factor (VEGF), decorin, hepatocyte growth factor (HGF), interleukin-6 (IL-6), macrophage migration inhibitory factor (MIF), hyaluronan (HA), adiponectin, soluble-intracellular adhesion molecule (s-ICAM), vascular cell adhesion molecule-1 (VCAM-1) and P-selectin, and dialysate cancer antigen 125 (CA125), were measured after 12 and 18 months. This paper focuses on results after 12 months, when patients in the PEN group changed to glucose-based PD fluid (PDF).♦ Results: At the end of 12 months, effluent dialysate levels of CA125, decorin, HGF, IL-6, adiponectin and adhesion molecules were significantly higher in the PEN group compared to controls, but all decreased after patients switched to glucose-based PDF. Macrophage migration inhibitory factor level was lower in the PEN group but increased after changing to glucose-based PDF and was similar to controls at 18 months. Serum adiponectin level was higher in the PEN group at 12 months, but was similar in the 2 groups at 18 months. Body weight, residual renal function, ultrafiltration volume and total Kt/V did not differ between both groups. Dialysate-to-plasma creatinine ratio at 4 h was higher in the PEN group at 12 months and remained so after switching to glucose-based PDF.♦ Conclusion: Changes in the biomarkers suggest that the PEN PD regimen may be associated with better preservation of peritoneal membrane integrity and reduced systemic vascular endothelial injury.  相似文献   
45.
A phytomolecule, icaritin, has been identified and shown to be osteopromotive for the prevention of osteoporosis and osteonecrosis. This study aimed to produce a bioactive poly (l ‐lactide‐co‐glycolide)–tricalcium phosphate (PLGA–TCP)‐based porous scaffold incorporating the osteopromotive phytomolecule icaritin, using a fine spinning technology. Both the structure and the composition of icaritin‐releasing PLGA–TCP‐based scaffolds were evaluated by scanning electron microscopy (SEM). The porosity was quantified by both water absorption and micro‐computed tomography (micro‐CT). The mechanical properties were evaluated using a compression test. In vitro release of icaritin from the PLGA–TCP scaffold was quantified by high‐performance liquid chromatography (HPLC). The attachment, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) on the composite scaffold were evaluated. Both an in vitro cytotoxicity test and an in vivo test via muscular implantation were conducted to confirm the scaffold's biocompatibility. The results showed that the PLGA–TCP–icaritin composite scaffold was porous, with interconnected macro‐ (about 480 µm) and micropores (2–15 µm). The mechanical properties of the PLGA–TCP–icaritin scaffold were comparable with those of the pure PLGA–TCP scaffold, yet was spinning direction‐dependent. Icaritin content was detected in the medium and increased with time. The PLGA–TCP–icaritin scaffold facilitated the attachment, proliferation and osteogenic differentiation of BMSCs. In vitro cytotoxicity test and in vivo intramuscular implantation showed that the composite scaffold had no toxicity with good biocompatibility. In conclusion, an osteopromotive phytomolecule, icaritin, was successfully incorporated into PLGA–TCP to form an innovative porous composite scaffold with sustained release of osteopromotive icaritin, and this scaffold had good biocompatibility and osteopromotion, suggesting its potential for orthopaedic applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
46.
贱金属合金烤瓷熔附金属修复体是口腔临床修复体应用的主体,存在着较高的不安全性,其生物相容性评价主要有细胞毒性试验、动物试验和临床前试验.细胞毒性检测主要有中性红试验、51Cr释放法、分子滤过试验、甲噻唑四唑氮比色试验、细胞计数试剂盒8试验、乳酸脱氢酶试验、红细胞溶血试验和流式细胞计数等,使用最广泛的细胞是L929细胞和海拉细胞.按细胞接触方式的不同,毒性试验细胞的培养分为浸提液培养法、直接接触法和间接接触法.动物试验可从整体上评价生物相容性,可产生免疫或补体激活反应,但试验难以控制,费用高,费时.动物试验可弥补细胞毒性试验难以模拟的综合反应,因此其与细胞毒性试验一样都是口腔材料生物相容性评价必不可少的环节.  相似文献   
47.
The aim of this study was to evaluate the biocompatibility of calcium silicate-based sealers (CeraSeal and EndoSeal TCS) and epoxy resin-based sealer (AH-Plus) in terms of cell viability, inflammatory response, expression of mesenchymal phenotype, osteogenic potential, cell attachment, and morphology, of human periodontal ligament stem cells (hPDLSCs). hPDLSCs were acquired from the premolars (n = 4) of four subjects, whose ages extended from 16 to 24 years of age. Flow cytometry analysis showed stemness of hPDLSCs was maintained in all materials. In cell viability test, AH-Plus showed the lowest cell viability, and CeraSeal showed significantly higher cell viability than others. In ELISA test, AH-Plus showed higher expression of IL-6 and IL-8 than calcium silicate-based sealers. In an osteogenic potential test, AH-Plus showed a lower expression level than other material; however, EndoSeal TCS showed a better expression level than others. All experiments were repeated at least three times per cell line. Scanning electronic microscopy studies showed low degree of cell proliferation on AH-Plus, and high degree of cell proliferation on calcium silicate-based sealers. In this study, calcium silicate-based sealers appear to be more biocompatible and less cytotoxic than epoxy-resin based sealers.  相似文献   
48.
Loosening of orthodontic and orthopedic implants is a critical and common clinical problem. To minimize the numbers of revision surgeries due to peri-implant inflammation or insufficient osseointegration, developments of new implant manufacturing strategies are indicated. Ultrafast laser surface texturing is a promising contact-free technology to modify the physicochemical properties of surfaces toward an anti-infectious functionalization. This work aims to texture Ti6Al4V surfaces with ultraviolet (UV) and green (GR) radiation for the manufacturing of laser-induced periodic surface structures (LIPSS). The assessment of these surface modifications addresses key aspects of topography, morphology and chemical composition. Human primary mesenchymal stromal cells (hMSCs) were cultured on laser-textured and polished Ti6Al4V to characterize the surfaces in terms of their in vitro biocompatibility, cytotoxicity, and metal release. The outcomes of the in vitro experiment show the successful culture of hMSCs on textured Ti6Al4V surfaces developed within this work. Cells cultured on LIPSS surfaces were not compromised in terms of their viability if compared to polished surfaces. Yet, the hMSC culture on UV-LIPSS show significantly lower lactate dehydrogenase and titanium release into the supernatant compared to polished. Thus, the presented surface modification can be a promising approach for future applications in orthodontics and orthopedics.  相似文献   
49.
Thermosensitive hydrogels based on chitosan are of great interests for injectable implant drug delivery. The poly(ethylene glycol)-grafted-chitosan (PEG-g-CS) hydrogel was reported as a potential thermosensitive system. The objective of the present study is to evaluate the cytotoxicity, in vivo degradation and drug release of PEG-g-CS hydrogel. Cytotoxicity was evaluated using L929 murine fibrosarcoma cell line. Degradation and drug release in vivo were investigated by subcutaneous injection of the hydrogel into Sprague-Dawley rats. PEG-g-CS polymer exhibits no significant cytotoxicity when its concentration is less than 3 mg mL?1. After being implanted, PEG-g-CS hydrogel maintains its integrity for two weeks and collapses, merging into the tissue, in the third week. It causes moderate inflammatory response but no fibrous encapsulation around the hydrogel is found. The hydrogel presents a three-week sustained release of cyclosporine A with no significant burst release in vitro and produces the effective drug concentration in blood for more than five weeks in vivo, performing almost the same bioavailability to chitosan/glycerophosphate hydrogel. Further modifications of PEG-g-CS hydrogel might be necessary to modulate the degradation and to mitigate the fluctuations in blood drug concentration.  相似文献   
50.
The objective of the present study was to develop 2-hydroxypropyl methacrylate-co-polyethylene methacrylate [p(HPMA-co-PEG–MEMA)] hydrogels that are able to efficiently entrap doxorubicin for the application of loco-regional control of the cancer disease. Systemic chemotherapy provides low clinical benefit while localized chemotherapy might provide a therapeutic advantage. In this study, effects of hydrogel properties such as PEG chains length, cross-linking density, biocompatibility, drug loading efficiency, and drug release kinetics were evaluated in vitro for targeted and controlled drug delivery. In addition, the characterization of the hydrogel formulations was conducted with swelling experiments, permeability tests, Fourier transform infrared, SEM, and contact angle studies. In these drug-hydrogel systems, doxorubicin contains amine group that can be expected a strong Lewis acid–base interaction between drug and polar groups of PEG chains, thus the drug was released in a timely fashion with an electrostatic interaction mechanism. It was observed that doxorubicin release from the hydrogel formulations decreased when the density of cross-linking, and drug/polymer ratio were increased while an increase in the PEG chains length of the macro-monomer (i.e. PEG–MEMA) in the hydrogel system was associated with an increase in water content and doxorubicin release. The biocompatibility of the hydrogel formulations has been investigated using two measures: cytotoxicity test (using lactate dehydrogenase assay) and major serum proteins adsorption studies. Antitumor activity of the released doxorubicin was assessed using a human SNU398 human hepatocellular carcinoma cell line. It was observed that doxorubicin released from all of our hydrogel formulations which remained biologically active and had the capability to kill the tested cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号