首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
基础医学   25篇
临床医学   1篇
内科学   16篇
预防医学   1篇
药学   11篇
中国医学   2篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
21.
Twenty-six 9-aminoacridine derivatives were evaluated in cell-based assays for cytotoxicity and antiviral activity against a panel of 10 RNA and DNA viruses. While seven compounds (9, 10, 14, 19, 21, 22, 24) did not affect any virus and two (6, 11) were moderately active against CVB-5 or Reo-1, 17 compounds exhibited a marked specific activity against BVDV, prototype of pestiviruses which are responsible for severe diseases of livestock. Most anti-BVDV agents showed EC50 values in the range 0.1-8 μM, thus comparing favorably with the reference drugs ribavirine and NM 108. Some compounds, particularly those bearing a quinolizidinylalkyl side chain, displayed pronounced cytotoxicity. Further studies are warranted in order to achieve still better anti-BVDV agents, and to explore the potential antiproliferative activity of this kind of compounds.  相似文献   
22.
Na H  White KA 《Virology》2006,345(2):305-316
Tombusviridae is a large positive-strand RNA virus family. Tomato bushy stunt virus (TBSV), the type virus of this family, has a genome ending with AGCCC(-OH), termed the 3'-complementary silencer sequence (3'CSS). The 3'CSS is able to base pair with a complementary internally-located sequence, 5'GGGCU, called the replication silencer element (RSE). In TBSV, previous compensatory mutational analysis of the RSE-3'CSS interaction showed it to be functionally important for viral RNA synthesis both in vitro and in vivo. However, these investigations also revealed that the RSE and 3'CSS are very sensitive to nucleotide changes, even when base pairing potential between the two elements is maintained. Consequently, an alternative investigative approach was used in this study where the wild-type sequences of these elements were preserved and their surrounding contexts were modified. Results from these analyses, using a TBSV DI RNA, revealed important new structural requirements necessary for the RSE and 3'CSS to operate in vivo. Collectively, the data suggest that accessibility of the elements and their proximity to adjoining stem structures are important functional parameters. Based on these findings, a working structural model for the TBSV RSE-3'CSS interaction is proposed that involves coaxial stacking of adjacent helices at either end of the RSE-3'CSS interaction. Components of this structural model are extendable to potential RSE-3'CSS interactions that were identified throughout Tombusviridae by comparative sequence analysis. This survey also revealed a significant level of diversity and modularity with respect to RSEs, 3'CSSs and their structural contexts and, moreover, suggests that RSE-3'CSS interactions are prevalent in Tombusviridae and related viruses.  相似文献   
23.
Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2′-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.  相似文献   
24.
Panaviene Z  Baker JM  Nagy PD 《Virology》2003,308(1):191-205
Two of the five viral-coded proteins of tombusviruses, which are small, nonsegmented, plus-stranded RNA viruses of plants, are required for replication in infected cells. These replicase proteins, namely, p33 and p92, of cucumber necrosis virus are expressed directly from the genomic RNA via a readthrough mechanism. Their overlapping domains contain an arginine/proline-rich RNA-binding motif (termed RPR, which has the sequence RPRRRP). Site-directed mutagenesis of p33 expressed in Escherichia coli, followed by a gel shift assay, defined two of the four arginines as required for efficient RNA binding in vitro. In vivo testing of 19 RPR motif mutants revealed that the RPR motif, and therefore the ability to bind RNA, is important for the replication of tombusviruses and their associated defective interfering (DI) RNAs. Mutation within the RPR motif also affected the ratio of subgenomic versus genomic RNAs in infected cells. To test whether the RPR motif is essential for the function of either p33 or p92 in replication, we used a two-component system developed by, J. Virol. 5845-5851), in which p92 was expressed from the genomic RNA of a tombusvirus, while p33 was expressed from a DI RNA. The protoplast experiments with the two-component system revealed that the RPR motif is essential for the replication function of both proteins. Interestingly, mutations within the RPR motif of p33 and p92 had different effects on RNA replication, suggesting different roles for the RNA-binding motifs of these proteins in tombusvirus replication.  相似文献   
25.
Ribavirin (1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide) is the standard treatment for Lassa fever, though its mode of action is unknown. One possibility is depletion of the intracellular GTP pool via inhibition of the cellular enzyme inosine monophosphate dehydrogenase (IMPDH). This study compared the anti-arenaviral effect of ribavirin with that of two other IMPDH inhibitors, mycophenolic acid (MPA) and 5-ethynyl-1-β-d-ribofuranosylimidazole-4-carboxamide (EICAR). All three compounds were able to inhibit Lassa virus replication by ≥2 log units in cell culture. Restoring the intracellular GTP pool by exogenous addition of guanosine reversed the inhibitory effects of MPA and EICAR, while ribavirin remained fully active. Analogous experiments performed with Zaire Ebola virus showed that IMPDH inhibitors are also active against this virus, although to a lesser extent than against Lassa virus. In conclusion, the experiments with MPA and EICAR indicate that replication of Lassa and Ebola virus is sensitive to depletion of the GTP pool mediated via inhibition of IMPDH. However, this is not the predominant mechanism by which ribavirin exerts its in-vitro antiviral effect on Lassa virus.  相似文献   
26.
BACKGROUND & AIMS: Error catastrophe from an increase in mutation rate may be a possible mechanism of action of ribavirin in chronic hepatitis C (CHC). We sought to evaluate the mutagenic potential of ribavirin in vivo and to determine if conserved regions of hepatitis C virus (HCV) NS5B are mutated during ribavirin therapy. METHODS: Thirty-one patients with CHC genotype 1 who participated in a randomized, placebo-controlled trial of ribavirin for 48 weeks were studied. After 48 weeks, patients on placebo were crossed-over to open-label ribavirin for 48 weeks. Viral RNA was extracted from paired, stored sera at day 0 and week 24 during the randomized phase and weeks 48, 52, and 72 during the cross-over phase. The entire NS5B region was sequenced and the mutation rates were calculated. RESULTS: An increase in mutation rate was observed after 4 weeks (4.4 x 10(-2) vs 2.1 x 10(-3) per site/y, P = .02) but not after 24 weeks (4.0 x 10(-3) vs. 5.5 x 10(-3) per site/y, P = .1) in patients who crossed over to ribavirin. Similarly, during the randomized phase no increase in the number of mutations or the mutation rate was observed at week 24 between the ribavirin- and placebo-treated patients 6.6 vs 4.3 x 10(-3) per site/y, respectively (P = .4). No mutations were observed in conserved regions of NS5B. CONCLUSIONS: Ribavirin therapy is associated with an early, transient increase in the mutation rate of HCV. Lethal mutagenesis and error catastrophe is unlikely to be the sole mechanism of action of ribavirin during therapy for CHC.  相似文献   
27.
Smita Nair 《Virology》2010,396(1):106-2985
Processing of Sesbania mosaic virus (SeMV) polyprotein 2a and 2ab was reanalyzed in the view of the new genome organization of sobemoviruses. Polyprotein 2a when expressed in E. coli, from the new cDNA clone, got cleaved at the earlier identified sites E325-T326, E402-T403 and E498-S499 to release protease, VPg, P10 and P8, respectively. Additionally, a novel cleavage was identified within the protease domain at position E132-S133, which was found to be essential for efficient polyprotein processing. Products, corresponding to cleavages identified in E. coli, were also detected in infected Sesbania leaves. Interestingly, though the sites are exactly the same in polyprotein 2ab, it got cleaved between Protease-VPg but not between VPg-RdRp. This indicates to a differential cleavage preference, governed probably by the conformation of 2ab. Also, the studies revealed that, in SeMV, processing is regulated by mode of cleavage and context of the cleavage site.  相似文献   
28.

Ethnopharmacological relevance

Eclipta alba, traditionally known as bhringraj, has been used in Ayurvedic medicine for more than 1000 years in India. It is used for the treatment of infective hepatitis, liver cirrhosis, liver enlargement and other ailments of liver and gall bladder in India. The aim of this study was to evaluate anti-hepatitis C virus activity present in the Eclipta alba extract, perform bioassay based fractionation and identify anti-HCV phytochemicals from the active fractions.

Materials and methods

Identification of active compounds was performed by bio-activity guided fractionation approach. Active isolates were separated by the combination of silica gel chromatography and preparative scale reverse phase HPLC. Eclipta alba extract and its isolates were examined for their ability to inhibit HCV replicase (HCV NS5B) activity in vitro and HCV replication in a cell culture system carrying replicating HCV subgenomic RNA replicon. The purified isolates were also examined for their binding affinity to HCV replicase by fluorescence quenching and their cytotoxicity by MTT assay.

Results

Eclipta alba extract strongly inhibited RNA dependent RNA polymerase (RdRp) activity of HCV replicase in vitro. In cell culture system, it effectively inhibited HCV replication which resulted in reduced HCV RNA titer and translation level of viral proteins. Bioassay-based fractionations of the extracts and purification of anti-HCV phytochemicals present in the active fractions have identified three compounds, wedelolactone, luteolin, and apigenin. These compounds exhibited dose dependent inhibition of HCV replicase in vitro, and anti-HCV replication activity in the cell culture system

Conclusion

Eclipta alba extract and phytochemicals isolated from active fractions display anti-HCV activity in vitro and in cell culture system. The standardized Eclipta alba extract or its isolates can be used as an effective alternative and complementary treatment against HCV.  相似文献   
29.
Increasing sequence information indicates that RNA viruses constitute a major fraction of marine virus assemblages. However, only 12 RNA virus species have been described, infecting known host species of marine single-celled eukaryotes. Eight of these use diatoms as hosts, while four are resident in dinoflagellate, raphidophyte, thraustochytrid, or prasinophyte species. Most of these belong to the order Picornavirales, while two are divergent and fall into the families Alvernaviridae and Reoviridae. However, a very recent study has suggested that there is extraordinary diversity in aquatic RNA viromes, describing thousands of viruses, many of which likely use protist hosts. Thus, RNA viruses are expected to play a major ecological role for marine unicellular eukaryotic hosts. In this review, we describe in detail what has to date been discovered concerning viruses with RNA genomes that infect aquatic unicellular eukaryotes.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号