首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11481篇
  免费   994篇
  国内免费   2035篇
耳鼻咽喉   176篇
儿科学   34篇
妇产科学   42篇
基础医学   1578篇
口腔科学   3614篇
临床医学   776篇
内科学   1043篇
皮肤病学   66篇
神经病学   3376篇
特种医学   209篇
外科学   1372篇
综合类   1167篇
现状与发展   8篇
预防医学   153篇
眼科学   167篇
药学   432篇
  5篇
中国医学   223篇
肿瘤学   69篇
  2024年   20篇
  2023年   218篇
  2022年   256篇
  2021年   479篇
  2020年   413篇
  2019年   392篇
  2018年   418篇
  2017年   575篇
  2016年   614篇
  2015年   442篇
  2014年   901篇
  2013年   1172篇
  2012年   807篇
  2011年   761篇
  2010年   726篇
  2009年   510篇
  2008年   497篇
  2007年   492篇
  2006年   519篇
  2005年   459篇
  2004年   424篇
  2003年   387篇
  2002年   333篇
  2001年   293篇
  2000年   215篇
  1999年   210篇
  1998年   217篇
  1997年   216篇
  1996年   149篇
  1995年   141篇
  1994年   116篇
  1993年   102篇
  1992年   106篇
  1991年   109篇
  1990年   96篇
  1989年   91篇
  1988年   49篇
  1987年   74篇
  1986年   68篇
  1985年   91篇
  1984年   68篇
  1983年   40篇
  1982年   42篇
  1981年   45篇
  1980年   47篇
  1979年   29篇
  1978年   22篇
  1977年   23篇
  1976年   22篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Multifaceted dialogue between graft and host in neurotransplantation   总被引:1,自引:0,他引:1  
Current restorative neurotransplantation research focuses mainly on the potential of the neural graft to replace damaged or missing cell populations and to deliver needed gene products in the form of transgenes. Because of this graft-oriented bias of the procedure, possible dormant regenerative capabilities within the host have been largely underestimated and dismissed as insignificant. This review discusses existing evidence that neural grafts can have stimulating effects on host-intrinsic plasticity that can help regeneration of the mammalian central nervous system. If confirmed, the synergistic interaction between graft and host might substantially enhance our therapeutic possibilities.  相似文献   
992.
We report a treatment for spinal cord injury involving implantation of dendritic cells (DCs), which act as antigen-presenting cells in the immune system. The novel mechanisms underlying this treatment produce functional recovery. Among the immune cells tested, DCs showed the strongest activity inducing proliferation and survival of neural stem/progenitor cells (NSPCs) in vitro. Furthermore, in DC-implanted adult mice, endogenous NSPCs in the injured spinal cord were activated for mitotic de novo neurogenesis. These DCs produced neurotrophin-3 and activated endogenous microglia in the injured spinal cord. Behavioral analysis revealed the locomotor functions of DC-implanted mice to have recovered significantly as compared to those of control mice. Our results suggest that DC-implantation exerts trophic effects, including activation of endogenous NSPCs, leading to repair of the injured adult spinal cord.  相似文献   
993.
Retinal ganglion cells (RGCs) regenerating through peripheral nerve grafts show enhanced survival after further axonal injury for at least 4 weeks [Restor. Neurol. Neurosci. 21 (2003) 11]. Here, we examined the survival of the neurons and their microglial phagocytosis in dependence of the site of reaxotomy. Therefore, the optic nerve in adult rats was transected at different distances from the eye cup and replaced with an autologous piece of sciatic nerve. After 14 days of axonal growth, the regenerated neurites were reaxotomized either within the remaining optic stump or within the graft and their cell bodies were retrogradely labeled. Reaxotomy of regenerated ganglion cells within the remaining optic nerve resulted in reduced (but not significant) ganglion cell survival and significant microglial phagocytosis in contrast to reaxotomy within the peripheral nerve graft. Furthermore, phagocytosis-dependent labeling using two different fluorescent tracers revealed that the same microglial cell can phagocytose further dying ganglion cells within 14 days after the first activation. The results suggest that the intrasciatic segments of axons receive some trophic support that is retrogradely transported and required to limit the microglial activation. The microglial capability to phagocytose dying neurons several fold emphasizes their function in permanent scavenging within the retina.  相似文献   
994.
Glypican-1, a glycosyl phosphatidyl inositol (GPI)-anchored heparan sulphate proteoglycan expressed in the developing and mature cells of the central nervous system, acts as a coreceptor for diverse ligands, including slit axonal guidance proteins, fibroblast growth factors and laminin. We have examined its expression in primary sensory dorsal root ganglion (DRG) neurons and spinal cord after axonal injury. In noninjured rats, glypican-1 mRNA and protein are constitutively expressed at low levels in lumbar DRGs. Sciatic nerve transection results in a two-fold increase in mRNA and protein expression. High glypican-1 expression persists until the injured axons reinnervate their peripheral targets, as in the case of a crushed nerve. Injury to the central axons of DRG neurons by either a dorsal column injury or a dorsal root transection also up-regulates glypican-1, a feature that differs from most DRG axonal injury-induced genes, whose regulation changes only after peripheral and not central axonal injury. After axonal injury, the cellular localization of glypican-1 changes from a nuclear pattern restricted to neurons in noninjured DRGs, to the cytoplasm and membrane of injured neurons, as well as neighbouring non-neuronal cells. Sciatic nerve transection also leads to an accumulation of glypican-1 in the proximal nerve segment of injured axons. Glypican-1 is coexpressed with robo 2 and its up-regulation after axonal injury may contribute to an altered sensitivity to axonal growth or guidance cues.  相似文献   
995.
Axon regeneration in vivo is blocked at boundaries between Schwann cells and astrocytes, such as occur at the dorsal root entry zone and around peripheral nerve or Schwann cell grafts. We have created a tissue culture model of these boundaries in Schwann cell - astrocyte monolayer co-cultures. Axon behaviour resembles that in vivo, with axons showing a strong preference for Schwann cells over astrocytes. At boundaries between the two cell types, axons growing on astrocytes cross readily onto Schwann cells, but only 15% of axons growing on Schwann cells are able to cross onto astrocytes. Treatment with chondroitinase or chlorate to reduce inhibition by proteoglycans did not change this behaviour. The neural adhesion molecule L1 is present on Schwann cells and not astrocytes, and manipulation of L1 by application of an antibody, L1-Fc in solution, or adenoviral transduction of L1 into astrocytes increased the proportion of axons able to cross onto astrocytes to 40-50%. Elevating cAMP levels increased crossing from Schwann cells onto astrocytes in live and fixed cultures, and had a co-operative effect with NT-3 but not with NGF. Inactivation of Rho with a cell-permeant form of C3 exoenzyme also increased crossing from Schwann cells to astrocytes. Our experiments indicate that the preference of axons for Schwann cells is largely mediated by the presence of L1 on Schwann cells but not astrocytes, and that manipulation of growth cone signalling pathways can allow axons to disregard boundaries between the two cell types.  相似文献   
996.
Brain-derived neurotrophic factor (BDNF) has an acute excitatory effect on rat hippocampal synaptic transmission. To compare the action of BDNF upon the release of excitatory and inhibitory neurotransmitters in the hippocampus, we studied the effect of acutely applied BDNF on the K+-evoked glutamate and on the K+-evoked gamma-aminobutyric acid (GABA) release from rat hippocampal nerve terminals (synaptosomes). The acute application of BDNF (30-100 ng/ml) enhanced the K+-evoked [3H]glutamate release. This effect involved tyrosine-kinase B (TrkB) receptor phosphorylation and Ca2+ entry into synaptosomes through voltage-sensitive calcium channels, since it was abolished by K252a (200 nM), which prevents TrkB-mediated phosphorylation, and by CdCl2 (0.2 mM), a blocker of voltage-sensitive calcium channels. In contrast, BDNF (3-100 ng/ml) inhibited K+-evoked [3H]GABA release from hippocampal synaptosomes. This action was also mediated by phosphorylation of the TrkB receptor, but was independent of Ca2+ entry into synaptosomes through voltage-sensitive calcium channels. Blockade of transport of GABA with SKF 89976a (20 microM) prevented the inhibitory action of BDNF upon GABA release, indicating that BDNF influences the activity of GABA transporters. It is concluded that BDNF influences in an opposite way, through distinct mechanisms, the release of glutamate and the release of GABA from hippocampal synaptosomes.  相似文献   
997.
Colombo JA  Reisin HD 《Brain research》2004,1006(1):126-131
Evidence for "cable-like" processes stemming from astroglial cells in the supragranular cerebral cortex has been recently presented. In addition to what could be called the "general mammalian-like" astroglial architecture (the so-called "panglial syncytium") of the cerebral cortex, composed of typical stellate astrocytes (intralaminar astrocytes), the anthropoid species, mostly catarrhines, show a manifest vertical, radial distribution of long (interlaminar) astroglial processes. It can be tentatively proposed that evolutionary pressures resulted in the progressive appearance, in primates, of a new type of glial cell. Its soma has a superficial location and unusually long cellular processes that invade, in a predominant radial fashion, the supragranular region of the cerebral cortex. Their existence has been ignored for more than a century. On the neuronal side, modular (columnar) organization of the cerebral cortex may represent an evolutionary acquisition that could optimize communication and information processing, with the least volume compromise in terms of wiring. Yet, for such columns to be functionally operative, adequate isolation from neighboring units would be required. A "mass" operation of the astroglial architecture would tend to compromise spatial definition and the degrees of freedom of such columnar modules. It is proposed that the presence of a "palisade" of interlaminar glial processes represents a relatively recent evolutionary event, instrumental for the optimization of the modular (columnar) organization of the cerebral cortex. It is interesting that the supragranular cortical region has undergone the largest growth among mammalian species during brain evolution, and has been associated with a crucial role in cortico-cortical interactions.  相似文献   
998.
In this study, for the first time, we investigated about the localization of VEGF-A, VEGFR-2 and Ang-2 in the choroid plexuses of the adult mouse by Western blot and immunohistochemistry. Results showed that VEGF-A stained epithelial cells, while anti-VEGFR-2 and -Ang-2 antibodies stained endothelial cells. These data suggest that Ang-2, converting blood vessels into a more plastic and immature phenotype, would provide more accessibility of VEGF-A to endothelial cells.  相似文献   
999.
Regulation of nestin expression after cortical ablation in adult rat brain   总被引:5,自引:0,他引:5  
During embryogenesis, transient expression of nestin in proliferating neuroepithelial stem cells signals the commitment of progenitor cells to differentiate. Although adult mammalian brain contains very little nestin, significant upregulation of nestin has been reported following cerebral injury, leading to speculation that nestin may be involved in brain repair. In this study, we assessed the temporal profile of nestin expression following ablation injury of the sensory barrel cortex and investigated the influence of contralateral whisker stimulation on nestin expression. Since the adult mammalian brain contains proliferating neuronal progenitor cells that can be labeled with bromodeoxyuridine (BrdU), we also determined the association of nestin reexpression with BrdU-labeled cells. Nestin reexpression was detected predominantly in the ipsilateral cortex 3 days post-ablation. There was no significant nestin upregulation in the subcortical region. Nestin reexpression was most marked surrounding the lesion, but also extended throughout the entire lateral cortex. Nestin in the ipsilateral cortex subsided by day 7, although perilesional nestin expression was still apparent 28 days post-injury. Western blot analysis of nestin expression 3 days post-ablation confirmed a significant two-fold increase in nestin expression (p<0.05). Double immunofluorescence labeling demonstrated that the majority of nestin expression occurred in astrocytes. We were unable to detect any colocalization with neuronal makers. However, BrdU-labeled cells, which were readily detected in the subventricular zone prior to injury, were readily detected in the perilesional area 3 days post-ablation, concomitant with nestin in this area. Confocal microscopy detected several BrdU-positive cells expressing nestin. Taken together, the data support a potential role for nestin reexpression in brain repair.  相似文献   
1000.
Yu Z  Li W  Hillman J  Brunk UT 《Brain research》2004,1016(2):163-169
3-Aminopropanal (3-AP), a degradation product of polyamines such as spermine, spermidine and putrescine, is a lysosomotropic small aldehyde that causes apoptosis or necrosis of most cells in culture, apparently by inducing moderate or extensive lysosomal rupture, respectively, and secondary mitochondrial changes. Here, using the human neuroblastoma SH-SY5Y cell line, we found simultaneous occurrence of apoptotic and necrotic cell death when cultures were exposed to 3-AP in concentrations that usually are either nontoxic, or only cause apoptosis. At 30 mM, but not at 10 mM, the lysosomotropic base and proton acceptor NH3 completely blocked the toxic effect of 3-AP, proving that 3-AP is lysosomotropic and suggesting that the lysosomal membrane proton pump of neuroblastoma cells is highly effective, creating a lower than normal lysosomal pH and, thus, extensive intralysosomal accumulation of lysosomotropic drugs. A wave of internal oxidative stress, secondary to changes in mitochondrial membrane potential, followed and gave rise to further lysosomal rupture. The preincubation of cells for 24 h with a chain-breaking free radical-scavenger, alpha-tocopherol, before exposure to 3-AP, significantly delayed both the wave of oxidative stress and the secondary lysosomal rupture, while it did not interfere with the early 3-AP-mediated phase of lysosomal break. Obviously, the reported oxidative stress and apoptosis/necrosis are consequences of lysosomal rupture with ensuing release of lysosomal enzymes resulting in direct/indirect effects on mitochondrial permeability, membrane potential, and electron transport. The induced oxidative stress seems to act as an amplifying loop causing further lysosomal break that can be partially prevented by alpha-tocopherol. Perhaps secondary brain damage during a critical post injury period can be prevented by the use of drugs that temporarily raise lysosomal pH, inactivate intralysosomal 3-AP, or stabilize lysosomal membranes against oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号