首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
基础医学   16篇
内科学   1篇
神经病学   26篇
特种医学   1篇
预防医学   1篇
眼科学   1篇
药学   12篇
  2019年   2篇
  2018年   1篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   11篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1995年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有58条查询结果,搜索用时 0 毫秒
31.
We have previously shown that melatonin influences the development of α8 nicotinic acetylcholine receptor (nAChR) by measurement of the acetylcholine-induced increase in the extracellular acidification rate (ECAR) in chick retinal cell cultures. Cellular differentiation that takes place between DIV (days in vitro) 4 and DIV 5 yields cells expressing α8 nAChR and results in a significant increase in the ECAR acetylcholine-induced. Blocking melatonin receptors with luzindole for 48 h suppresses the development of functional α8 nAChR. Here we investigated the time window for the effect of melatonin on retinal cell development in culture, and whether this effect was dependent on an increase in the expression of α8 nAChR. First, we confirmed that luzindole was inhibiting the effects of endogenous melatonin, since it increases 2-[125I] iodomelatonin (23 pM) binding sites density in a time-dependent manner. Then we observed that acute (15, 60 min, or 12 h) luzindole treatment did not impair acetylcholine-induced increase in the ECAR mediated by activation of α8 nAChR at DIV 5, while chronic treatment (from DIV 3 or DIV 4 till DIV 5, or DIV 3.5 till DIV 4.5) led to a time-dependent reduction of the increase in the acetylcholine-induced ECAR. The binding parameters for [125I]-α-bungarotoxin (10 nM) sites in membrane were unaffected by melatonin suppression that started at DIV 3. Thus, melatonin surges in the time window that occurs at the final stages of chick retinal cell differentiation in culture is essential for development of the cells expressing α8 nAChR subtype in full functional form.  相似文献   
32.
During cerebral ischemia, dysregulated glutamate release activates N-methyl-d-aspartate (NMDA) receptors which promotes excitotoxicity and intracellular acidosis. Ischemia also induces cellular adenosine (ADO) release, which activates ADO receptors and reduces neuronal injury. The aim of this research was to determine if decreasing intracellular pH (pH(i)) enhances ADO release from neurons. Rat forebrain neurons were incubated with NMDA, acetate, propionate, 5-(N)-ethyl-N-isopropyl amiloride (EIPA) or low pH buffer. pH(i) was determined with the fluorescent dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and cellular release of ADO was assayed. NMDA decreased pH(i) and increased ADO release from neurons. Acetate and propionate decreased pH(i) and evoked ADO release from neurons. EIPA, an inhibitor of sodium hydrogen exchanger 1 (NHE1), enhanced the acidosis in neurons but did not enhance ADO release. Decreasing extracellular pH (pH(e)) to 6.8 or 6.45 significantly decreased pH(i) in neurons, but was not consistently associated with increased ADO release. The main finding of this study was that acidosis per se did not enhance ADO release from neurons.  相似文献   
33.
34.
General anaesthetics are proposed to cause unconsciousness by modulating neuronal excitability in the mammalian brain through mechanisms that include enhancement of inhibitory GABAA receptor currents and suppression of excitatory glutamate receptor responses. Both intravenous and volatile agents may produce neurotoxic effects during early postnatal rodent brain development through similar mechanisms. In the following study, we investigated anaesthetic cytotoxicity in primary cortical neurones and glia from postnatal day 2-8 mice. Cultures at 4-20 days in vitro were exposed to combinations of ketamine (100 μM to 3 mM), nitrous oxide (75%, v/v) and/or isoflurane (1.5-5%, v/v) for 6-12 h. Neuronal survival and cell death were measured via microtubule associated protein 2 immunoassay and lactate dehydrogenase release assays, respectively.Clinically relevant anaesthetic concentrations of ketamine, nitrous oxide and isoflurane had no significant neurotoxic effects individually or when given as anaesthetic cocktails, even with up to 12 h exposure. This lack of neurotoxicity was observed regardless of whether cultures were prepared from postnatal day 0-2 or day 8 mice, and was also unaffected by number of days in vitro (DIV 4-20). Significant neurotoxic effects were only observed at supraclinical concentrations (e.g. 1-3 mM ketamine).Our study suggests that neurotoxicity previously reported in vivo is not due to direct cytotoxicity of anaesthetic agents, but results from other impacts of the anaesthetised state during early brain development.  相似文献   
35.
Statins (inhibitors of HMG-CoA reductase) have shown promise in treating multiple sclerosis (MS). However, their effect on oligodendrocyte remyelination of demyelinated axons has not been clarified. Since developmental myelination shares many features with the remyelination process, we investigated the effect of lipophilic simvastatin on developmental myelination in organotypic cerebellar slice cultures (CSC). In this study, we first characterized developmental myelination in CSC from postnatal day (P)5 and P10 mice that express enhanced green fluorescence protein (eGFP) in oligodendrocyte-lineage cells. We then examined the effect of simvastatin on three developmental myelination stages: early myelination (P5 CSC, 2DIV), late myelination (P10 CSC, 2DIV) and full myelination (P10 CSC, 10DIV). We found that treatment with simvastatin (0.1 μM) for 6 days decreased the survival of Purkinje cells and oligodendrocytes drastically during the early myelination stage, while moderately during the late and full myelination stages. Oligodendrocytes are more resistant than Purkinje cells. The toxic effect of simvastatin could be rescued by the product of HMG-CoA reductase mevalonate but not low-density lipoprotein (LDL). Additionally, this toxic effect is independent of isoprenylation since farnesyl pyrophosphate (Fpp) but not geranylgeranyl pyrophosphate (GGpp) provided partial rescue. Our findings therefore suggest that inhibition of cholesterol synthesis is detrimental to neuronal tissue.  相似文献   
36.
37.
We have investigated the ability of certain dietary flavonoids, known to exert beneficial effects on the central nervous system, to affect neuronal apoptosis. We used cerebellar granule cells undergoing apoptosis due to potassium deprivation in a serum-free medium in either the absence or presence of the flavonoids genistein and daidzein, which are present in soy, and of catechin and epicatechin, which are present in cocoa. These compounds were used in a blood dietary concentration range. We found that genistein and daidzein, but not catechin and epicatechin, prevented apoptosis, with cell survival measured 24 h after the induction of apoptosis being higher than that of the same cells incubated in flavonoid free medium (80% and 40%, respectively); there was no effect in control cells. A detailed investigation of the effect of these compounds on certain mitochondrial events that occur in cells en route to apoptosis showed that genistein and daidzein prevented the impairment of glucose oxidation and mitochondrial coupling, reduced cytochrome c release, and prevented both impairment of the adenine nucleotide translocator and opening of the mitochondrial permeability transition pore. Interestingly, genistein and daidzein were found to reduce the levels of reactive oxygen species, which are elevated in cerebellar granule cell apoptosis. These findings strongly suggest that the prevention of apoptosis depends mainly on the antioxidant properties of genistein and daidzein. This could lead to the development of a flavonoid-based therapy in neuropathies.  相似文献   
38.
Organotypic cultures of cerebellum were exposed to 10?3 and 10?4 M kainic acid (KA) for 3 to 28 days. Ultrastructural studies revealed intensive production of intracytoplasmic glial fibrils in astrocytes at a given stage of maturation in vitro. Gliofibril production was preceded by dilatation of rough endoplasmic reticulum (RER) channels and mitochondrial damage. Glial fibrillary changes are considered as a primary response of glial cells to kainic acid due to disturbances of protein metabolism.  相似文献   
39.
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K+ efflux and Na+-, Ca2+- and Cl-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly δ-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na+ influx through the membrane and reduces the increase in intracellular Ca2+, thus decreasing the excessive leakage of intracellular K+. Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na+ channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.  相似文献   
40.
Phencyclidine (PCP) is an N-methyl-D-aspartate receptor (NMDAR) antagonist known to cause selective neurotoxicity in the cortex following subchronic administration. The purpose of this study was to test the hypothesis that upregulation of the NMDAR plays a role in PCP-induced apoptotic cell death. Corticostriatal slice cultures were used to determine the effects of NMDAR subunit antisense oligodeoxynucleotides (ODNs) on PCP-induced apoptosis and NMDAR upregulation. NR1, NR2A or NR2B antisense ODNs were incubated alone or with PCP for 48h. One day following washout, it was observed that PCP treatment caused an increase in NR1, NR2A and Bax polypeptides in the cortex, but had no effect on Bcl-xL. These increases were associated with an increase in cortical histone-associated DNA fragments. Co-incubation of PCP with either NR1 or NR2A antisense significantly reduced PCP-induced apoptosis, while neither NR2B antisense ODN nor NR1 sense ODN used as a control had an effect. This effect was exactly correlated with the ability of the antisense ODNs to prevent PCP-induced upregulation of NR subunit proteins and the pro-apoptotic protein, Bax. That is, western analysis showed that antisense ODNs directed against either NR1 or NR2A prevented PCP-induced increases in Bax in addition to preventing the upregulation of the respective receptor proteins. On the other hand, the NR2B antisense ODN had no effect on either NR2B protein or on Bax. These data suggest that NR1 and NR2A antisense ODNs offer neuroprotection from apoptosis, and that upregulation of the NR1 and NR2A subunits following PCP administration is at least partly responsible for the observed apoptotic DNA fragmentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号