首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
基础医学   16篇
内科学   1篇
神经病学   26篇
特种医学   1篇
预防医学   1篇
眼科学   1篇
药学   12篇
  2019年   2篇
  2018年   1篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   11篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1995年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
21.
Neurogenesis occurs in the hippocampus of the developing and adult brain due to the presence of multipotent stem cells and restricted precursor cells at different stages of differentiation. It has been proposed that they may be of potential benefit for use in cell transplantation approaches for neurodegenerative disorders and trauma. Prolonged release of interleukin-1β (IL-1β) from activated microglia has a deleterious effect on hippocampal neurons and is implicated in the impaired neurogenesis and cognitive dysfunction associated with aging, Alzheimer's disease and depression. This study assessed the effect of IL-1β on the proliferation and differentiation of embryonic rat hippocampal NPCs in vitro. We show that IL-1R1 is expressed on proliferating NPCs and that IL-1β treatment decreases cell proliferation and neurosphere growth. When NPCs were differentiated in the presence of IL-1β, a significant reduction in the percentages of newly-born neurons and post-mitotic neurons and a significant increase in the percentage of astrocytes was observed in these cultures. These effects were attenuated by IL-1 receptor antagonist. These data reveal that IL-1β exerts an anti-proliferative, anti-neurogenic and pro-gliogenic effect on embryonic hippocampal NPCs, which is mediated by IL-1R1. The present results emphasise the consequences of an inflammatory environment during NPC development, and indicate that strategies to inhibit IL-1β signalling may be necessary to facilitate effective cell transplantation approaches or in conditions where endogenous hippocampal neurogenesis is impaired.  相似文献   
22.
Previous studies suggest membrane binding is a key determinant of amyloid β (Aβ) neurotoxicity. However, it is unclear whether this interaction is receptor driven. To address this issue, a D-handed enantiomer of Aβ42 (D-Aβ42) was synthesized and its biophysical and neurotoxic properties were compared to the wild-type Aβ42 (L-Aβ42). The results showed D- and L-Aβ42 are chemically equivalent with respect to copper binding, generation of reactive oxygen species and aggregation profiles. Cell binding studies show both peptides bound to cultured cortical neurons. However, only L-Aβ42 was neurotoxic and inhibited long term potentiation indicating L-Aβ42 requires a stereospecific target to mediate toxicity. We identified the lipid phosphatidylserine, as a potential target. Annexin V, which has very high affinity for externalized phosphatidylserine, significantly inhibited L-Aβ42 but not D-Aβ42 binding to the cultured cortical neurons and significantly rescued L-Aβ42 neurotoxicity. This suggests that Aβ mediated toxicity in Alzheimer disease is dependent upon Aβ binding to phosphatidylserine on neuronal cells.  相似文献   
23.
Yun X  Li W  Qiu J  Jou J  Wei D  Tu S  Zhang Q 《Neuroscience letters》2011,501(1):10-14
Nerve regeneration and functional recovery have been a major issue following injury of nerve tissues. Electrospun nanofibers are known to be suitable scaffolds for neural tissue engineering applications. In addition, modified substrates often provide better environments for neurite outgrowth. This study was conducted to determine if multi-walled carbon nanotubes (MWCNTs)-coated electrospun poly (l-lactic acid-co-caprolactone) (PLCL) nanofibers improved the neurite outgrowth of rat dorsal root ganglia (DRG) neurons and focal adhesion kinase (FAK) expression of PC-12 cells. To accomplish this, the DRG neurons in either uncoated PLCL scaffolds (PLCL group) or MWCNTs-coated PLCL scaffolds (PLCL/CNT group) were cultured for nine days. MWCNTs-coated PLCL scaffolds showed improved neurite outgrowth of DRG neurons. Moreover, FAK expression was up-regulated in the PLCL/CNT group when compared to the PLCL group in a non-time-dependent manner. These findings suggest that MWCNTs-coated nanofibrous scaffolds may be alternative materials for nerve regeneration and functional recovery in neural tissue engineering.  相似文献   
24.
25.
26.
Glutamatergic synapse development has been rigorously investigated for the past two decades at both the molecular and cell biological level yet a comparable intensity of investigation into the cellular and molecular mechanisms of GABAergic synapse development has been lacking until relatively recently. This review will provide a detailed overview of the current understanding of GABAergic synapse development with a particular emphasis on assembly of synaptic components, molecular mechanisms of synaptic development, and a subset of human disorders which manifest when GABAergic synapse development is disrupted. An unexpected and emerging theme from these studies is that glutamatergic and GABAergic synapse development share a number of overlapping molecular and cell biological mechanisms that will be emphasized in this review.  相似文献   
27.
Dense-core vesicles (DCVs) are responsible for transporting, processing, and secreting neuropeptide cargos that mediate a wide range of biological processes, including neuronal development, survival, and learning and memory. DCVs are synthesized in the cell body and are transported by kinesin motor proteins along microtubules to pre- and postsynaptic release sites. Due to the dependence on kinesin-based transport, we sought to determine if the kinesin-3 family member, KIF1A, transports DCVs in primary cultured hippocampal neurons, as has been described for invertebrate neurons. Two-color, live-cell imaging showed that the DCV markers, chromogranin A-RFP and BDNF-RFP, move together with KIF1A-GFP in both the anterograde and retrograde directions. To demonstrate a functional role for KIF1A in DCV transport, motor protein expression in neurons was reduced using RNA interference (shRNA). Fluorescently tagged DCV markers showed a significant reduction in organelle flux in cells expressing shRNA against KIF1A. The transport of cargo driven by motors other than KIF1A, including mitochondria and the transferrin receptor, was unaffected in KIF1A shRNA expressing cells. Taken together, these data support a primary role for KIF1A in the anterograde transport of DCVs in mammalian neurons, and also provide evidence that KIF1A remains associated with DCVs during retrograde DCV transport.  相似文献   
28.
General anaesthetics are proposed to cause unconsciousness by modulating neuronal excitability in the mammalian brain through mechanisms that include enhancement of inhibitory GABAA receptor currents and suppression of excitatory glutamate receptor responses. Both intravenous and volatile agents may produce neurotoxic effects during early postnatal rodent brain development through similar mechanisms. In the following study, we investigated anaesthetic cytotoxicity in primary cortical neurones and glia from postnatal day 2-8 mice. Cultures at 4-20 days in vitro were exposed to combinations of ketamine (100 μM to 3 mM), nitrous oxide (75%, v/v) and/or isoflurane (1.5-5%, v/v) for 6-12 h. Neuronal survival and cell death were measured via microtubule associated protein 2 immunoassay and lactate dehydrogenase release assays, respectively.Clinically relevant anaesthetic concentrations of ketamine, nitrous oxide and isoflurane had no significant neurotoxic effects individually or when given as anaesthetic cocktails, even with up to 12 h exposure. This lack of neurotoxicity was observed regardless of whether cultures were prepared from postnatal day 0-2 or day 8 mice, and was also unaffected by number of days in vitro (DIV 4-20). Significant neurotoxic effects were only observed at supraclinical concentrations (e.g. 1-3 mM ketamine).Our study suggests that neurotoxicity previously reported in vivo is not due to direct cytotoxicity of anaesthetic agents, but results from other impacts of the anaesthetised state during early brain development.  相似文献   
29.
Phospholipase C-δ1 (PLCδ1) is the most fundamental form of the eukaryotic PLC and thought to play important roles in the regulation of cells. We previously reported that PLCδ1 shuttles between the cytoplasm and nucleus, and an influx of Ca2+ triggers the nuclear import of PLCδ1 via Ca2+-dependent interaction with importin β1, although the physiological meaning of this is unclear. Here we have examined the distribution of PLCδ1 using primary cultures of rat hippocampal neurons. Treatment of 7DIV neurons with ionomycin or thapsigargin caused the nuclear localization of PLCδ1 as has been observed in other cell lines. Similar results were obtained with neurons treated with glutamate, suggesting that the nuclear localization of PLCδ1 plays some roles in excitotoxicity associated with ischemic stress. Generally, cells undergoing ischemic or hypoxic cell death show nuclear shrinkage. We confirmed that a massive influx of Ca2+ caused similar results. Furthermore, overexpression of GFP-PLCδ1 facilitated ionomycin-induced nuclear shrinkage in embryonic fibroblasts derived from PLCδ1 gene-knockout mice (PLCδ1KO-MEF). By contrast, an E341A mutant that cannot bind with importin β1 and be imported into the nucleus by ionomycin and also lacks enzymatic activity did not cause nuclear shrinkage in PLCδ1KO-MEF. Nuclear translocation and the PLC activity of PLCδ1, therefore, may regulate the nuclear shape by controlling the nuclear scaffold during stress-induced cell death caused by high levels of Ca2+.  相似文献   
30.
Tyrosine hydroxylase-positive nerve fiber formation occurs in two diverse morphological patterns in rat fetal ventral mesencephalic slice cultures; one is non-glial-associated and the other is glial-associated. The aim of this study was to characterize the non-glial-associated nerve fibers and its relation to migration of astrocytes. Organotypic slice cultures were prepared from embryonic days 12, 14, and 18 rat fetuses and maintained for 5, 7 or 14 days in vitro. Inhibition of cell proliferation using cytosine β-d-arabinofuranoside was conducted in embryonic day 14 ventral mesencephalic cultures. The treatment impaired astrocytic migration at 7 and 14 days in vitro. The reduced migration of astrocytes exerted a negative effect on the glial-associated tyrosine hydroxylase-positive nerve fibers, reducing the outgrowth from the tissue slice. The non-glial-associated outgrowth was, however, positively affected by reduced astrocytic migration, reaching distances around 3 mm in 2 weeks, and remained for longer time in culture. Co-cultures of fetal ventral mesencephalon and frontal cortex revealed the cortex as a target for the non-glial-associated tyrosine hydroxylase-positive outgrowth. The age of the fetal tissue at plating affected the astrocytes such that older tissue increased the length of astrocytc migration. Younger tissue at plating promoted the presence of non-glial-asscociated outgrowth and long radial-glia-like processes, while older tissue promoted migration of neurons instead of formation of nerve fiber network. In conclusion, inhibition of astrocytic proliferation promotes the persistence of long-distance growing tyrosine hydroxylase-positive nerve fibers in ventral mesencephalic slices cultures. Furthermore, the long-distance growing nerve fibers target the frontal cortex and are absent in cultures derived from older tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号