首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4053篇
  免费   240篇
  国内免费   197篇
耳鼻咽喉   18篇
儿科学   36篇
妇产科学   23篇
基础医学   680篇
口腔科学   64篇
临床医学   172篇
内科学   523篇
皮肤病学   17篇
神经病学   655篇
特种医学   69篇
外国民族医学   2篇
外科学   254篇
综合类   612篇
预防医学   181篇
眼科学   34篇
药学   823篇
中国医学   246篇
肿瘤学   81篇
  2023年   12篇
  2022年   24篇
  2021年   42篇
  2020年   40篇
  2019年   52篇
  2018年   56篇
  2017年   59篇
  2016年   88篇
  2015年   62篇
  2014年   110篇
  2013年   132篇
  2012年   163篇
  2011年   190篇
  2010年   176篇
  2009年   162篇
  2008年   208篇
  2007年   207篇
  2006年   151篇
  2005年   161篇
  2004年   198篇
  2003年   225篇
  2002年   218篇
  2001年   189篇
  2000年   152篇
  1999年   160篇
  1998年   169篇
  1997年   157篇
  1996年   156篇
  1995年   80篇
  1994年   80篇
  1993年   66篇
  1992年   55篇
  1991年   67篇
  1990年   54篇
  1989年   54篇
  1988年   42篇
  1987年   38篇
  1986年   28篇
  1985年   30篇
  1984年   33篇
  1983年   28篇
  1982年   18篇
  1981年   20篇
  1980年   21篇
  1979年   15篇
  1978年   15篇
  1977年   4篇
  1976年   7篇
  1975年   3篇
  1973年   6篇
排序方式: 共有4490条查询结果,搜索用时 31 毫秒
61.
An inward current characterized by a slow inactivation, was induced when the extracellular Ca2– concentration was reduced by EGTA. It was suppressed by replacing external Na with Tris+ or by D-600, increased by epinephrine, and was not affected by TTX. These findings suggest that this current is carried by Na+ ions through the Ca channels. The Na current decreased in amplitude as the concentration of external divalent cations was elevated. Blocking the Na current by divalent cations could be approximated by a bimolecular interaction between divalent cation and channel, with a dissociation constant of 1.2 M for Ca2+ and 60 M for Mg2+. Single channel currents were recorded in the cell-attached configuration. With a pipette solution of pCa=7.5 or pCa>8, the single channel I-V relationship was linear and the slope conductance was 70–75 pS. For 40 mV depolarizations from the resting potential, unitary currents were smaller at pCa=6 than at pCa=7.5. However, single channel events, which were observed after the repolarizing step to the resting potential, were much the same amplitude. The open time histogram was fitted with a single exponential having a time constant of 1.9 ms at around –40 mV (pCa>8, with 5 M Bay K 8644 in the bath solution), which was decreased with increasing the Ca2+ concentration in the pipette solution. Noise power spectra of patch currents at pCa=6 revealed a high-frequency component at around 1500 Hz. These results suggest that Ca binding to the sites with a high affinity for Ca2+ blocks the Na conductance in Ca channels. Reduction of the unitary current at higher concentrations of Ca2+ might be attributed to a rapid block by Ca2+.  相似文献   
62.
为了探讨趋化性细胞因子在体外对人Tc1和Tc2亚群细胞内Ca2 + 浓度变化的影响 ,从PBMC中分离纯化CD8+ T细胞 ,在特定细胞因子及细胞因子抗体作用下 ,体外定向诱导出能长期培养的Tc1和Tc2细胞系 ,用免疫荧光染色结合流式细胞术分析对其进行鉴定后 ,通过流式细胞术检测在趋化性细胞因子刺激前后 ,细胞内Ca2 + 浓度的变化。发现受SDF 1作用后 ,Tc1及Tc2细胞内Ca2 + 浓度变化均不明显 ,而IP 10刺激后 ,Tc1及Tc2细胞内Ca2 + 水平在短时间内明显上调 ,且在Tc1胞内的上升幅度远高于Tc2细胞 ,在MIP 1β刺激后 ,也观察到类似趋势 ;受Eotaxin刺激后 ,Tc1及Tc2细胞内Ca2 + 水平均有微小上升 ,在Tc2细胞内的上升幅度略高于Tc1细胞。说明Tc1和Tc2细胞受趋化性细胞因子作用后 ,细胞内Ca2 + 浓度有不同程度的变化 ,且与趋化性细胞因子受体的表达呈现一定的相关性。  相似文献   
63.
Voltage gated ion channels on the somatic membrane of rat cerebellar Purkinje cells were studied in dissociated cell culture with the combination of cell-attached and whole-cell variation of patch clamp technique. The method enables us to record local somatic membrane current under an improved space clamp condition. Transient (fast-inactivating) and steady (slow inactivating) Ca channel currents, Na current, transient (fast-inactivating) and steady (slow-inactivating) K currents, were observed. Transient and steady Ca channel currents were activated at test potentials more positive than –40 mV and –20 mV, respectively (in 50 mM external Ba). The transient current inactivated with a half-decay time of 10–30 ms during maintained depolarizing pulses, while the steady current showed relatively little inactivation. Na current was activated at more positive potentials than –60 mV, and inactivated with a half-decay time of less than 5 ms. Transient and steady K outward currents were recorded at more positive potential than –20 mV and –40 mV, respectively. The transient current inactivated with a half-decay time of 2–8 ms. Ca, Na and K channels showed different patterns of distribution on the somatic membrane. Steady Ca channels tended to cluster compared with Na or K channels.  相似文献   
64.
The pro-inflammatory cytokine interleukin-1β (IL-1β) is released by cells during injury and stress, and increased neuronal expression of IL-1β is a feature of age-related neurodegeneration. We have recently reported that IL-1β has a biphasic effect on the K+-induced rise in intracellular Ca2+ concentration ([Ca2+]i) in cortical synaptosomes, exerting an inhibitory effect on the K+-induced rise in [Ca2+]i at lower (3.5 ng/mL) concentrations and a stimulatory effect on the K+-induced rise in [Ca2+]i at higher (100 ng/mL) concentrations. In the present study, we observed that the K+-induced rise in [Ca2+]i was inhibited to a similar extent by the lower concentration of IL-1β in cortical synaptosomes prepared from young (3-month-old), middle-aged (12-month-old) and aged (24-month-old) rats. In contrast, cortical synaptosomes prepared from the aged rats exhibited an increased susceptibility to the higher concentration of IL-1β, resulting in a marked elevation in [Ca2+]i. We propose that the age-related increase in neuronal concentration of IL-1β promotes a dramatic elevation in [Ca2+]i following membrane depolarization, thereby altering Ca2+ homeostasis and exacerbating neuronal vulnerability to excitotoxicity.  相似文献   
65.
 Three major ionic currents, Ca2+-dependent K+ current (I K-Ca), delayed rectifier type K+ current (I kd) and Ca2+ current (I Ca), were activated by depolarization under whole-cell clamp in single smooth muscle cells isolated from guinea-pig urinary bladder. Externally applied ruthenium red (RuR) reduced the amplitude of I K-Ca and I Ca at 0 mV (IC50 values were 4.2 and 5.6 μM, respectively), but did not affect I Kd. Spontaneous transient outward currents (STOCs) and caffeine-induced outward currents (I caf) at –30 mV were reduced by external 10 μM RuR. When 10 μM RuR was added to the pipette solution, I K-Ca during depolarization, STOCs and I caf significantly decreased with time. RuR did not change the unitary current amplitude of the large-conductance Ca2+-dependent K+ (BK) channels, but reduced the open probability of the channel under excised patch-clamp recording mode. RuR reduced the channel activity more effectively from the cytosolic face than from the other. This inhibition decreased when the cytosolic Ca2+ concentration was increased. These results indicate that RuR blocks BK and Ca2+ channels in urinary bladder smooth muscle cells. The decrease in I K-Ca, STOCs and I caf by RuR is attributable to the direct inhibition of BK channel activity, probably in addition to the inhibition of Ca2+ release from storage sites. The direct inhibition of BK channel activity by RuR may be related to the interaction of RuR with the Ca2+-binding sites of the channel protein. Received: 15 October 1997 / Received after revision and accepted: 25 November 1997  相似文献   
66.
The effect of membrane stretch on voltage-activated Ba2+ current (I Ba) was studied in antral circular myocytes of guinea-pig using the whole- cell patch-clamp technique. The changes in cell volume were elicited by superfusing the myocytes with anisosmotic solutions. Hyposmotic superfusate (202 mosmol/l) induced cell swelling and increased peak values of I Ba at 0 mV (from −406.6 ± 45.5 pA to −547.5 ± 65.6 pA, mean ± SEM, n = 8) and hyperosmotic superfusate (350 mosmol/l) induced cell shrinkage and decreased peak values of I Ba at 0 mV (to −269.5 ± 39.1 pA, n = 8). Such changes were reversible and the extent of change was dependent on the osmolarity of superfusate. The values of normalized I Ba at 0 mV were 1.43 ± 0.04, 1.30 ± 0.06, 1.23 ± 0.04, 1.19 ± 0.04, 1 and 0.68 ± 0.06 at 202, 220, 245, 267, 290 and 350 mosmol/l, respectively (n = 8). I Ba was almost completely blocked by nicardipine (5 μM) under hyposmotic conditions. The values of steady-state half-inactivation voltage (−37.7 ± 3.3 and −36.5 ± 2.6 mV, under control and hyposmotic conditions, respectively) or the half-activation voltage (−13.6 ± 2.3 and −13.9 ± 1.9 mV) of I Ba were not significantly changed (P > 0.05, n = 6). Cell membrane capacitance was slightly increased from 50.00 ± 2.86 pF to 50.22 ± 2.82 pF by a hyposmotic superfusate (P < 0.05, n = 6). It is suggested that cell swelling increases voltage-operated L-type calcium channel current and that such a property is related to the response of gastric smooth muscle to mechanical stimuli. Received: 14 November 1995/Received after revision and accepted: 8 January 1996  相似文献   
67.
The molecular mechanism(s) involved in mediating Ca2+ entry into rat parotid acinar and other non-excitable cells is not known. In this study we have examined the kinetics of Ca2+ entry in fura-2-loaded parotid acinar cells, which were treated with thapsigargin to deplete internal Ca2+ pools (Ca2+-pool-depleted cells). The rate of Ca2+ entry was determined by measuring the initial increase in free cytosolic [Ca2+] ([Ca2+]i) in Ca2+-pool-depleted, and control (untreated), cells upon addition of various [Ca2+] to the medium. In untreated cells, a low-affinity component was detected with K Ca = 3.4 ± 0.7 mM (where K Ca denotes affinity for Ca2+) and V max = 9.8 ± 0.4 nM [Ca2+]i /s. In thapsigargin-treated cells, two Ca2+ influx components were detected with K Ca values of 152 ±  79 μM (V max = 5.1 ± 1.9 nM [Ca2+]i/s) and 2.4 ±  0.9 mM (V max = 37.6 ± 13.6 nM [Ca2+]i/s), respectively. We have also examined the effect of Ca2+ and depolarization on these two putative Ca2+ influx components. When cells were treated with thapsigargin in a Ca2+-free medium, Ca2+ influx was higher than into cells treated in a Ca2+-containing medium and, while there was a 46% increase in the V max of the low-affinity component (no change in K Ca), the high-affinity component was not clearly detected. In depolarized Ca2+-pool-depleted cells (with 50 mM KCl in the medium) the high-affinity component was considerably decreased while there was an apparent increase in the K Ca of the low-affinity component, without any change in the V max. These results demonstrate that Ca2+ influx into parotid acinar cells (1) is increased (four- to five-fold) upon internal Ca2+ pool depletion, and (2) is mediated via at least two components, with low and high affinities for Ca2+. Received: 30 October 1995/Received after revisionand accepted: 13 December 1995  相似文献   
68.
 The characteristics of the binding sites for the Conus magus toxins ω-conotoxin MVIIC and ω-conotoxin MVIID, as well as their effects on K+-evoked 45Ca2+ entry and whole-cell Ba2+ currents (I Ba), and K+-evoked catecholamine secretion have been studied in bovine adrenal chromaffin cells. Binding of [125I] ω-conotoxin GVIA to bovine adrenal medullary membranes was displaced by ω-conotoxins GVIA, MVIIC and MVIID with IC50 values of around 0.1, 4 and 100 nM, respectively. The reverse was true for the binding of [125I] ω-conotoxin MVIIC, which was displaced by ω-conotoxins MVIIC, MVIID and GVIA with IC50 values of around 30, 80 and 1.200 nM, respectively. The sites recognized by ω-conotoxins MVIIC and MVIID in bovine brain exhibited higher affinities (IC50 values of around 1 nM). Both ω-conotoxin MVIIC and MVIID blocked I Ba by 70–80%; the higher the [Ba2+]o of the extracellular solution the lower the blockade induced by ω-conotoxin MVIIC. This was not the case for ω-conotoxin MVIID; high Ba2+ (10 mM) slowed down the development of blockade but the maximum blockade achieved was similar to that obtained in 2 mM Ba2+. A further difference between the two toxins concerns their reversibility; washout of ω-conotoxin MVIIC did not reverse the blockade of I Ba while in the case of ω-conotoxin MVIID a partial, quick recovery of current was produced. This component was irreversibly blocked by ω-conotoxin GVIA, suggesting that it is associated with N-type Ca2+ channels. Blockade of K+-evoked 45Ca2+ entry produced results which paralleled those obtained by measuring I Ba. Thus, 1 μM of each of ω-conotoxin GVIA and MVIIA inhibited Ca2+ uptake by 25%, while 1 μM of each of ω-conotoxin MVIIC and MVIID caused a 70% blockade. K+-evoked catecholamine secretory responses were not reduced by ω-conotoxin GVIA (1 μM). In contrast, at 1 μM both ω-conotoxin MVIIC and MVIID reduced the exocytotic response by 70%. These data strengthen the previously established conclusion that Q-type Ca2+ channels that contribute to the regulation of secretion and are sensitive to ω-conotoxins MVIIC and MVIID are present in bovine chromaffin cells. These channels, however, seem to possess binding sites for ω-conotoxins MVIIC and MVIID whose characteristics differ considerably from those described to occur in the brain; they might represent a subset of Q-type Ca2+ channels or an entirely new subtype of voltage-dependent high-threshold Ca2+ channel. Received: 16 April 1997 / Received after revision: 10 July 1997 / Accepted: 23 July 1997  相似文献   
69.
 Structural determinants of permeation in large unit conductance calcium-activated potassium channels (BK channels) were investigated. Y293 and F294 in the P-region of dSlo were substituted by tryptophans. Compared to wild-type channels, Y293W channels displayed reduced inward unitary currents while F294W channels exhibited normal inward current amplitudes but flickery kinetics. Both mutations produced changes in current/voltage relations under bi-ionic conditions. Sensitivity to block by external tetraethylammonium (TEA) was affected in both channels, and the voltage dependence of TEA block was increased in F294W channels. Both mutations also affected gating by shifting the half-maximal activation voltage of macroscopic conductance/voltage relations to more positive potentials, and eliminating a slow component of deactivation. The double mutant did not produce ionic currents. These data are consistent with a model in which Y293 contributes to a potassium-binding site close to the outer mouth of the dSlo pore, while F294 contributes to an energy barrier near this site. Received: 16 September 1997 / Received after revision: 20 November 1997 / Accepted: 21 November 1997  相似文献   
70.
 Bradykinin and caffeine were used as two different agonists to study inositol 1,4,5-trisphosphate (IP3)-sensitive and caffeine/ryanodine-sensitive intracellular Ca2+ release in the outgrowing neurites of nerve-growth-factor (NGF)-treated rat phaeochromocytoma cells (PC12). Changes in neuritic intracellular free Ca2+ ([Ca2+]i) in single cells were measured after loading with a 1:1 mixture of the acetoxymethyl (AM) ester of the Ca2+-sensitive dyes Fura-red and Fluo-3, in combination with confocal microscopy. Bradykinin-induced Ca2+ release was blocked by U73211, a specific phospholipase C inhibitor. Caffeine-induced Ca2+ release was very low in neurites at rest. It increased after the cells were preloaded with Ca2+. The Ca2+ signal evoked at high concentrations of bradykinin (>500 nM) arose from a trigger zone in the proximal part of the neurite, as a bi-directional wave towards the growth cone and cell body. The speed of neuritic Ca2+ waves was reduced in cells loaded with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-tetraacetic acid/AM. Preloading of Ca2+ stores led to increased bradykinin-induced Ca2+ release, as seen for caffeine, and faster Ca2+ wave speeds. Caffeine evoked a simultaneous [Ca2+]i rise along the neurites of Ca2+ preloaded cells. Higher Ca2+ signal amplitudes and faster Ca2+ wave speeds, but no longer-lasting IP3-induced [Ca2+]i signals, correlated with increased caffeine-induced Ca2+ release in the neurites. At low concentrations of bradykinin (<1.0 nM), the Ca2+ signals ceased to propagate as complete Ca2+ waves. Instead, repetitive stochastic Ca2+ release events (neuritic Ca2+ puffs) were observed. Neuritic Ca2+ puffs spread across only a few microns, at a slower speed than neuritic Ca2+ waves. These Ca2+ puffs represent elementary Ca2+ release units, whereby the released Ca2+ ions form these elementary events into the shape of a Ca2+ wave. Received: 16 April 1996 / Received after revision and accepted: 13 May 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号