首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21685篇
  免费   1647篇
  国内免费   569篇
耳鼻咽喉   129篇
儿科学   195篇
妇产科学   236篇
基础医学   2582篇
口腔科学   1862篇
临床医学   1774篇
内科学   3689篇
皮肤病学   313篇
神经病学   668篇
特种医学   899篇
外科学   2901篇
综合类   2234篇
现状与发展   3篇
一般理论   1篇
预防医学   1373篇
眼科学   985篇
药学   2403篇
  14篇
中国医学   1103篇
肿瘤学   537篇
  2024年   77篇
  2023年   478篇
  2022年   1182篇
  2021年   1438篇
  2020年   1008篇
  2019年   894篇
  2018年   873篇
  2017年   796篇
  2016年   826篇
  2015年   826篇
  2014年   1406篇
  2013年   1732篇
  2012年   1038篇
  2011年   1241篇
  2010年   942篇
  2009年   882篇
  2008年   843篇
  2007年   872篇
  2006年   768篇
  2005年   695篇
  2004年   565篇
  2003年   501篇
  2002年   414篇
  2001年   377篇
  2000年   306篇
  1999年   287篇
  1998年   252篇
  1997年   224篇
  1996年   192篇
  1995年   161篇
  1994年   164篇
  1993年   142篇
  1992年   119篇
  1991年   119篇
  1990年   120篇
  1989年   96篇
  1988年   112篇
  1987年   108篇
  1986年   110篇
  1985年   142篇
  1984年   112篇
  1983年   79篇
  1982年   114篇
  1981年   58篇
  1980年   56篇
  1979年   40篇
  1978年   27篇
  1977年   37篇
  1976年   16篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
The shaping process of surface texture is complicated and depends on many factors and phenomena accompanying them. This article presents the author’s test stand for the measurement of relative displacements in a tool–workpiece system during longitudinal turning. The aim of this study was to determine the influence of edge radius on the relative displacement between the tool and workpiece. The cutting process was carried out with inserts with different edge radii for X37CrMoV5-1 steel. As a result of the research, vibration charts of the tool–workpiece system were obtained. In the range of feed 0.03–0.18 mm/rev, the values of the standard deviation of relative displacements in the x-axis were obtained in the range of 0.36–0.78 μm for the insert with an edge radius of rn = 48.8 μm. As a result of the work, it was determined that for the feed value of 0.12 mm/rev for all inserts, the relative displacements are the smallest. As the final effect, the formula for forecasting the Ra roughness parameter was presented.  相似文献   
952.
Laser-assisted high speed milling is a subtractive machining method that employs a laser to thermally soften a difficult-to-cut material’s surface in order to enhance machinability at a high material removal rate with improved surface finish and tool life. However, this machining with high speed leads to high friction between workpiece and tool, and can result in high temperatures, impairing the surface quality. Use of conventional cutting fluid may not effectively control the heat generation. Besides, vegetable-based cutting fluids are invariably a major source of food insecurity of edible oils which is traditionally used as a staple food in many countries. Thus, the primary objective of this study is to experimentally investigate the effects of water-soluble sago starch-based cutting fluid on surface roughness and tool’s flank wear using response surface methodology (RSM) while machining of 316 stainless steel. In order to observe the comparison, the experiments with same machining parameters are conducted with conventional cutting fluid. The prepared water-soluble sago starch based cutting fluid showed excellent cooling and lubricating performance. Therefore, in comparison to the machining using conventional cutting fluid, a decrease of 48.23% in surface roughness and 38.41% in flank wear were noted using presented approach. Furthermore, using the extreme learning machine (ELM), the obtained data is modeled to predict surface roughness and flank wear and showed good agreement between observations and predictions.  相似文献   
953.
To meet the performance goals of fifth generation (5G) and future sixth generation (6G) optical wireless communication (OWC) and sensing systems, we seek to develop low-cost, reliable, compact lasers capable of sourcing 5–20 Gb/s (ideally up to 100 Gb/s by the 2030s) infrared beams across free-space line-of-sight distances of meters to kilometers. Toward this end, we develop small arrays of electrically parallel vertical cavity surface emitting lasers (VCSELs) for possible future use in short-distance (tens of meters) free-space optical communication and sensing applications in, for example, homes, data centers, manufacturing spaces, and backhaul (pole-to-pole or pole-to-building) optical links. As a starting point, we design, grow by metal–organic vapor phase epitaxy, fabricate, test, and analyze 980 nm top-emitting triple VCSEL arrays. Via on-wafer high-frequency probe testing, our arrays exhibit record bandwidths of 20–25 GHz, optical output powers of 20–50 mW, and error-free data transmission at up to 40 Gb/s—all extremely well suited for the intended 5G short-reach OWC and sensing applications. We employ novel p-metal and top mesa inter-VCSEL connectors to form electrically parallel but optically uncoupled (to reduce speckle) arrays with performance exceeding that of single VCSELs with equal total emitting areas.  相似文献   
954.
We evaluated the adhesion, friction characteristics, durability against bodily acids, sterilization, cleaning, and anti-reflection performance of diamond-like carbon (DLC) coatings formed as a surface treatment of intracorporeal medical devices. The major coefficients of friction during intubation in a living body in all environments were lower with DLC coatings than with black chrome plating. DLC demonstrated an adhesion of approximately 24 N, which is eight times stronger than that of black chrome plating. DLC-coated samples also showed significant stability without being damaged during acid immersion and high-pressure steam sterilization, as suggested by the results of durability tests. In addition, the coatings remained unpeeled in a usage environment, and there was no change in the anti-reflection performance of the DLC coatings. In summary, DLC coatings are useful for improving intracorporeal device surfaces and extending the lives of medical devices.  相似文献   
955.
The corrosion of materials used in the design of metal-air batteries may shorten their cycle life. Therefore, metal-based materials with enhanced electrochemical stability have attracted much attention. The purpose of this work was to determine the corrosion resistance of commercially pure titanium Grade 2 (CpTi G2) cellular lattice with the triply periodic minimal surfaces (TPMS) architecture of G80, D80, I-2Y80 in 0.1 M KOH solution saturated with oxygen at 25 °C. To produce CpTi G2 cellular lattices, selective laser melting technology was used which allowed us to obtain 3D cellular lattice structures with a controlled total porosity of 80%. For comparison, the bulk electrode was also investigated. SEM examination and statistical analysis of the surface topography maps of the CpTi G2 cellular lattices with the TPMS architecture revealed much more complex surface morphology compared to the bulk CpTi SLM. Corrosion resistance tests of the obtained materials were conducted using open circuit potential method, Tafel curves, anodic polarization curves, and electrochemical impedance spectroscopy. The highest corrosion resistance and the lowest material consumption per year were revealed for the CpTi G2 cellular lattice with TPMS architecture of G80, which can be proposed as promising material with increased corrosion resistance for gas diffusion in alkaline metal-air batteries.  相似文献   
956.
As carbon dioxide (CO2) adsorbents, porous materials with high specific surface areas and abundant CO2-philic groups always exhibit high CO2 capacities. Based on this consensus, a category of oxygen-rich macroporous carbon foams was fabricated from macroporous resorcinol-formaldehyde resins (PRFs), which were obtained via an oil-in-water concentrated emulsion. By the active effect of potassium hydroxide (KOH) at high temperatures, the resultant carbon foams (ACRFs) possessed abundant micropores with rich oxygen content simultaneously. At the same time, most of the ACRFs could retain the marcoporous structure of their precursor. It is found that porosity of ACRFs was mainly determined by carbonization temperature, and the highest specific surface areas and total pore volume of ACRFs could reach 2046 m2/g and 0.900 cm3/g, respectively. At 273 K, ACRFs showed highest CO2 capacity as 271 mg/g at 1 bar and 91.5 mg at 15 kPa. Furthermore, it is shown that the ultra-micropore volume was mainly responsible for the CO2 capacities of ACRFs at 1 bar, and CO2 capacities at 15 kPa were mainly affected by the oxygen content. It is also found that the presence of macropores would accelerate ACRFs adsorbing CO2. This study provides ideas for designing a porous CO2 adsorbent.  相似文献   
957.
The objective of this study was to investigate the wear characteristics of the U-shaped rings of power connection fittings, and to construct a wear failure prediction model of U-shaped rings in strong wind environments. First, the wear evolution and failure mechanism of U-shaped rings with different wear loads were studied by using a swinging wear tester. Then, based on the Archard wear model, the U-shaped ring wear was dynamically simulated in ABAQUS, via the Umeshmotion subroutine. The results indicated that the wear load has an important effect on the wear of the U-shaped ring. As the wear load increases, the surface hardness decreases, while plastic deformation layers increase. Furthermore, the wear mechanism transforms from adhesive wear, slight abrasive wear, and slight oxidation wear, to serious adhesive wear, abrasive wear, and oxidation wear with the increase of wear load. As plastic flow progresses, the dislocation density in ferrite increases, leading to dislocation plugs and cementite fractures. The simulation results of wear depth were in good agreement with the test value of, with an error of 1.56%.  相似文献   
958.
Understanding the relationship between the intrinsic characteristics of materials (such as rheological properties and structural build-up) and printability and controlling intrinsic characteristics of materials through additives to achieve excellent printability is vital in digital concrete additive manufacturing. This paper aims at studying the effects of material’s structural build-up on the interlayer bond strength of 3DPC with different time gaps. Structural build-up can indirectly affect the interlayer bond strength by affecting the surface moisture of concrete. Based on the structural build-up of 3DPC, a new parameter, maximum operational time (MOT), is proposed, which can be considered as the limit of time gap to ensure high interlayer bond strength. Slump-retaining polycarboxylate superplasticizer (TS) slightly slows down the physical flocculation rate, but increases the maximum operational time of the cement paste. Nano clay significantly increases the sort-term structural build-up rate and has the function of internal curing and water retaining. Composite with nano-clay and TS can reduce the loss of surface moisture of 3D printed layers, prevent the formation of interface weak layer, and increase the interlayer bond strength between printed layers. This contribution can provide new insight into the design of 3D-printed ink with good extrudability, outstanding buildability, and excellent interlayer bond strength.  相似文献   
959.
Candida albicans (C. albicans) biofilm is a common etiological factor in denture stomatitis. The purpose of this study was to investigate the effects of incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC) as a protein repellent into a new high-impact denture acrylic (HIPA) resin on the surface roughness, solution pH, and C. albicans biofilm adhesion to the denture base. The new acrylic denture resin base was formulated by mixing MPC into HIPA resin at mass fractions of 1.5%, 3%, and 4.5%. Surface roughness was measured using a Mitutoyo surface roughness tester. C. albicans biofilm growth and viability were assessed via colony forming unit counts. The pH of the biofilm growth medium was measured using a digital pH meter. Adding MPC to the HIPA resin at percentages of 1.5% and 3% increased the roughness values significantly (p < 0.05), while adding 4.5% MPC resulted in no difference in roughness values to that of the control group (p > 0.05). All experimental groups demonstrated neutral pH values (pH ≅ 7) and were not significantly different from each other (p > 0.05). Incorporating 2-methacryloyloxyethyl phosphorylcholine at 4.5% resulted in a significant (≅1 log) colony-forming unit reduction compared with the control group with 0% MPC (p < 0.05). A fungal-retarding denture acrylic resin was developed through the incorporation of MPC for its protein-repelling properties. This newly developed denture acrylic material has the potential to prevent oral microbial infections, such as denture stomatitis.  相似文献   
960.
Residual stress may influence the mechanical behavior and durability of drawn materials. Thus, this study develops a multiple reduction die (MRD) that can reduce residual stress during the drawing process. The MRD set consists of several die tips, die cases, and lubricating equipment. All the die tips of the MRD were disposed of simultaneously. Finite element analysis of the drawing process was performed according to the reduction ratio of each die tip, and the variables in drawing process with the MRD were optimized using a deep neural network to minimize the residual stress. Experiments on the drawing process with the conventional die and MRD were performed to evaluate the residual stress and verify the effectiveness of the MRD. The results of X-ray diffraction measurements indicated that the axial and hoop residual stresses on the surface were dramatically reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号