首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3461篇
  免费   200篇
  国内免费   167篇
耳鼻咽喉   18篇
儿科学   16篇
妇产科学   31篇
基础医学   359篇
口腔科学   65篇
临床医学   213篇
内科学   491篇
皮肤病学   56篇
神经病学   226篇
特种医学   63篇
外科学   413篇
综合类   471篇
一般理论   1篇
预防医学   236篇
眼科学   442篇
药学   343篇
  2篇
中国医学   157篇
肿瘤学   225篇
  2024年   5篇
  2023年   78篇
  2022年   173篇
  2021年   176篇
  2020年   142篇
  2019年   126篇
  2018年   121篇
  2017年   124篇
  2016年   105篇
  2015年   100篇
  2014年   175篇
  2013年   220篇
  2012年   183篇
  2011年   214篇
  2010年   192篇
  2009年   212篇
  2008年   180篇
  2007年   203篇
  2006年   177篇
  2005年   178篇
  2004年   151篇
  2003年   113篇
  2002年   75篇
  2001年   59篇
  2000年   56篇
  1999年   51篇
  1998年   37篇
  1997年   31篇
  1996年   18篇
  1995年   16篇
  1994年   11篇
  1993年   21篇
  1992年   13篇
  1991年   11篇
  1990年   9篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   7篇
  1985年   8篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   7篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1973年   1篇
排序方式: 共有3828条查询结果,搜索用时 15 毫秒
101.
102.
103.
A HeLa cell line stably expressing the enhanced green fluorescence protein (EGFP) gene, interrupted by the HBB IVS2‐654 intron, was studied without treatment and after treatment with a single standard dose of 15 μM of N‐methyl‐N′‐nitro‐N‐nitrosoguanidine (MNNG). This assay was done in order to prove that such a construct can revert by a variety of mechanisms and that it produces a visible phenotype, i.e., green fluorescence. The system permits visual detection of living mutant cells among a background of non‐mutant cells and does not require a selective medium. The results show that the construct reverts by large deletions (–62, –100, and –162 bp), small insertions (+4 bp), small rearrangements (19 bp duplication), base substitutions at purines (G652, G653, A655, G579), and a pyrimidine (T654) between nucleotide positions 579 and 837. Splice‐site mutations were recovered, and some of the mechanisms underlying these mutations are discussed. Because of the ease of detection of revertant cells under fluorescent light and the wide variety of mutations that can be recovered, further development of this system could make it a useful new mammalian cell mutagenicity assay. Hum Mutat 18:526–534, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   
104.
The hereditary conservation in the genetically encoded CD1D sequences of various primates was analyzed. Genomic CD1D sequences of 17 rhesus macaques with distinct origins, eight Indian and nine Chinese, were examined and differences of only one or two nucleotides were detected and the consensus sequence of rhesus CD1D was determined. CD1D consensus sequences of three African green monkeys (AGMs) and the rhesus monkeys were then compared to study the evolutionary differences among interspecies. The CD1D consensus sequence determined from AGMs apparently differed by seven nucleotides from the rhesus consensus sequence, and nucleotide difference induced only three amino acid changes within Exon3, corresponding to the alpha2 domain of CD1d having a hydrophobic ligand-binding pocket. Such changes in the alpha2 domain may alter the characteristics of the SIV-derived glycolipid/lipid antigens presented by each CD1d molecule to innate natural killer T cells. In addition, the CD1D genomic sequences of three chimpanzees (chimps) were determined. To our surprise, although Exon2 and Exon3 reflecting antigen-binding alpha1 and alpha2 domains in chimps' CD1D were identical to that in humans except one amino acid, three amino acids within Exon4, reflecting alpha3 domain, were distinct from humans, and one of them was identical to those in rhesus and AGM CD1D. On the basis of the findings, the evolutionary relationship of the CD1d molecules among the various primates and their HIV-1/SIV susceptibility will be discussed.  相似文献   
105.
Bacterial toxins represent small molecules produced by microorganisms. Different toxins act on specific target molecules in mammalian cells. Once discovered, bacterial toxins have been providing tools to study cellular functions and often helped the dissection of complex cellular pathways, e.g. endocytic or secretory trafficking or signal transduction, by virtue of the fact that they either block or activate their specific cellular target molecules. Purified bacterial toxins have also allowed to address many basic biological questions and have provided tools for in vitro and in vivo experimental approaches in many fields of modern biology. The understanding of how bacterial toxins act in living cells often depends on our ability to visualize the trafficking and signaling pathways of these molecules. Fluorescence microscopy and other imaging tools are essential to provide insights into the functional changes induced by these pathogens at the level of individual host cells or single target proteins. Inside a single cell we can measure and quantify the effects of bacterial toxins on specific cellular proteins by microscopic and spectroscopic techniques. Fluorescence resonance energy transfer (FRET) is a high-resolution technique that allows to study protein-protein interactions. FRET can provide distance information in the range of 3- 7 nm between fluorescently labeled bacterial proteins in the live cell and cellular target proteins expressed as chimeras with green fluorescent protein (GFP), or spectrally shifted variants thereof. The purpose of this review is to introduce readers to the main experimental setups for analyses of protein-protein interactions using FRET as well as some applications.  相似文献   
106.
Probabilistic Regulation of IL-4 Production   总被引:1,自引:0,他引:1  
Among a population of uniformly differentiated TH2 cells, only a portion express IL-4 upon stimulation and those that do often express the product of only a single allele. We review the evidence for the basis of IL-4 monoallelism and argue that it depends upon probabilistic expression of the Il4 gene. Further, we argue that probabilistic expression may provide a powerful mechanism through which certain key functions of IL-4, such as immunoglobulin class switching and determination of macrophage phenotype, may be efficiently regulated.  相似文献   
107.
Human papilloma virus (HPV) type 16 infections of the genital tract are associated with the development of cervical cancer (CxCa) in women. HPV16-derived oncoproteins E6 and E7 are expressed constitutively in these lesions and might therefore be attractive candidates for T-cell-mediated adoptive immunotherapy. However, the low precursor frequency of HPV16E7-specific T cells in patients and healthy donors hampers routine isolation of these cells for adoptive transfer. To overcome this problem, we have isolated T cell receptor (TCR) genes from four different HPV16E7-specific healthy donor and patient-derived human cytotoxic T lymphocyte (CTL) clones. We examined whether genetic engineering of peripheral blood-derived CD8+ T cells in order to express HPV16E711-20-specific TCRs is feasible for adoptive transfer purposes. Reporter cells (Jurkat/MA) carrying a transgenic TCR were shown to bind relevant but not irrelevant tetramers. Moreover, these TCR-transgenic Jurkat/MA cells showed reactivity towards relevant target cells, indicating proper functional activity of the TCRs isolated from already available T cell clones. We next introduced an HPV16E711-20-specific TCR into blood-derived, CD8+ recipient T cells. Transgenic CTL clones stained positive for tetramers presenting the relevant HPV16E711-20 epitope and biological activity of the TCR in transduced CTL was confirmed by lytic activity and by interferon (IFN)-gamma secretion upon antigen-specific stimulation. Importantly, we show recognition of the endogenously processed and HLA-A2 presented HPV16E711-20 CTL epitope by A9-TCR-transgenic T cells. Collectively, our data indicate that HPV16E7 TCR gene transfer is feasible as an alternative strategy to generate human HPV16E7-specific T cells for the treatment of patients suffering from cervical cancer and other HPV16-induced malignancies.  相似文献   
108.
目的 :实现绿色荧光蛋白 (greenfluorescentprotein ,GFP)报告基因在骨髓基质细胞 (BMSC)中的高效、稳定、持久表达 ,直接示踪BMSC在关节软骨缺损内的分布及分化。方法 :构建重组逆转录病毒表达载体RV GFP ,通过PT6 7包装细胞克隆、G4 18筛选及扩增 ,获得大量含GFP基因的假病毒液 ,并直接转染BMSC。将含有GFP基因转染标记的BMSC与生物可降解材料复合后 ,植入猪自体关节软骨缺损处 ,7个月后共聚焦显微镜检测修复组织中GFP标记的BMSC的分布及分化。结果 :经双酶切鉴定证实重组逆转录病毒表达载体RV GFP构建成功 ,转染PT6 7细胞后可在荧光激发波长下 ,发出明亮的绿色荧光 ,转染率达 2 0 %~ 5 0 % ,经G4 18筛选后可达 10 0 %。筛选、扩增后 ,PT6 7细胞的上清培养液可成功地转染BMSC ,筛选后能稳定、持久、高效表达GFP。将标记的BMSC植入关节软骨缺损 7个月后 ,修复组织仍能高效表达GFP ,激光共聚焦显微镜下显示 ,多数新生软骨陷窝内有GFP标记的细胞。结论 :构建的重组逆转录病毒GFP载体 ,能持久标记骨髓基质细胞 ,用于细胞动态变化的研究及细胞转归的示踪 ,该方法简便、灵敏、可靠、直观。标记的BMSC可在关节软骨缺损内分化为成熟的软骨细胞 ,并在软骨缺损的修复中发挥重要作用  相似文献   
109.
Wang N  Yang T  Li J  Lei M  Shi J  Qiu W  Lian X 《Acta histochemica》2012,114(3):199-206
Although the function of c-Myc has been clarified in many tissues, until now its expression and role in hair follicle morphogenesis and the hair cycle remains unknown. In this study we detected c-Myc expression pattern in the process of mouse hair follicle development and normal cycle. We found that during hair follicle morphogenesis, the stage-specific expression of c-Myc was detected in mouse skin and was predominantly localized to the hair follicle epithelium. c-Myc expression was also consistently found in mouse skin throughout the hair follicle cycle. Through the in vivo injection of c-Myc inhibitory peptide and c-Myc expression plasmid, we also investigated the direct effects of c-Myc on the hair follicle structures during the hair follicle cycle. Our results showed that c-Myc inhibitory peptide significantly restrained the development of anagen hair follicles, while the injection of plasmid DNA encoding c-Myc in vivo clearly promoted anagen development. Our data indicate that c-Myc may play an important role in the proliferation and differentiation of the hair follicle keratinocytes during hair follicle development. c-Myc also was shown to participate in the regulation of the mouse hair growth cycle and could promote the proliferation of the hair matrix keratinocytes as well as the differentiation of the inner root sheath.  相似文献   
110.
In vertebrates, the tumor necrosis factor (TNF)-receptor (TNFR) system participates in diverse physiological and pathological events, such as inflammation and protective immune responses to microbial infections. There are few reports about the role of the invertebrate TNF-TNFR system in immune responses. Here, we isolated and characterized the TNF superfamily (LvTNFSF) gene, TNFR superfamily (LvTNFRSF) gene and lipopolysaccharide-induced TNF-α factor (LvLITAF) gene from Litopenaeus vannamei. LvTNFSF consists of 472 amino acids with a conserved C-terminal TNF domain and has 89.8% identity with the Marsupenaeus japonicus TNF superfamily gene. LvTNFRSF consists of 296 amino acids with a conserved TNFR domain and has 18.0% identity with Chlamys farreri TNFR, 14.6% identity with Drosophila melanogaster Wengen and 14.6% identity with Homo sapiens TNFR1. LvLITAF consists of 124 amino acids with the LITAF domain and shows 62.6% identity with D. melanogaster LITAF and 32.3% identity with H. sapiens LITAF. The promoter region of LvTNFSF was cloned and used to construct a luciferase reporter. In Drosophila S2 cells, the promoter of LvTNFSF can be activated by LvLITAF, L. vannamei NF-κB family proteins (LvRelish and LvDorsal) and LvSTAT. Unlike its mammalian counterparts, LvTNFRSF could not activate the NF-κB pathway in Drosophila S2 cells. Using real-time quantitative PCR, we obtained expression profiles of LvTNFSF, LvTNFRSF and LvLITAF in the gill, intestine and hepatopancreas of L. vannamei after challenge with Gram-negative Vibrio alginolyticus, Gram-positive Staphylococcus aureus, the fungus Candida albicans and white spot syndrome virus (WSSV). Taken together, our results reveal that LvTNFSF, LvTNFRSF and LvLITAF may be involved in shrimp immune responses to pathogenic infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号