首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6627篇
  免费   254篇
  国内免费   78篇
耳鼻咽喉   15篇
儿科学   186篇
妇产科学   42篇
基础医学   956篇
口腔科学   402篇
临床医学   1582篇
内科学   746篇
皮肤病学   36篇
神经病学   239篇
特种医学   144篇
外科学   973篇
综合类   806篇
预防医学   252篇
眼科学   19篇
药学   440篇
  1篇
中国医学   71篇
肿瘤学   49篇
  2024年   6篇
  2023年   98篇
  2022年   237篇
  2021年   275篇
  2020年   240篇
  2019年   200篇
  2018年   239篇
  2017年   175篇
  2016年   224篇
  2015年   205篇
  2014年   456篇
  2013年   439篇
  2012年   431篇
  2011年   491篇
  2010年   334篇
  2009年   352篇
  2008年   347篇
  2007年   310篇
  2006年   283篇
  2005年   264篇
  2004年   211篇
  2003年   160篇
  2002年   97篇
  2001年   104篇
  2000年   80篇
  1999年   89篇
  1998年   65篇
  1997年   60篇
  1996年   65篇
  1995年   52篇
  1994年   50篇
  1993年   39篇
  1992年   36篇
  1991年   11篇
  1990年   31篇
  1989年   26篇
  1988年   32篇
  1987年   16篇
  1986年   16篇
  1985年   19篇
  1984年   12篇
  1983年   6篇
  1982年   16篇
  1981年   6篇
  1980年   12篇
  1979年   8篇
  1978年   8篇
  1977年   10篇
  1976年   3篇
  1972年   3篇
排序方式: 共有6959条查询结果,搜索用时 31 毫秒
61.
Summary Ground reaction forces and mechanical power were investigated when the subjects walked normally, while they were racing or running at four speeds, and when they performed the running long jump take-off. In addition, the apparent spring constants of the support leg in eccentric and concentric phases were investigated at the four running speeds, during the running long jump take-off, and in the triple jump. Six club level track and field athletes, four national level long jumpers, and six national level triple jumpers took part in the study. Cinematographic technique and a mathematical model of hopping (Alexander and Vernon 1975) were employed in the analysis. Force and power values were found to vary in the following order (from highest to lowest): long jump take-off, maximal running speed, submaximal running (80, 60, and 40% of maximum speed), racing gait, and normal gait. The data disclosed that the measured parameters had the highest values in the long jump take-off performed by the long jump athletes. Their peak values were: resultant ground reaction force 3270±74 N and mechanical power 160.1±10.5 J×kg–1×s–1. For the track and field athletes the values were 2010±80 N and 126.0±12.6 J ×kg–1×s–1. The apparent spring constant values of the support leg in the national level jumper group were in eccentric phase 30.54±8.38 N×mm–1 ×kg–1 and in concentric phase 0.129±0.012 N×mm–1×kg–1. In the track and field athletes the values were 13.97±1.01 N×mm–1×kg–1 and 0.093±0.003 N×mm–1×kg–1, respectively. In general, the increase in force and mechanical power output was related to the value of the apparent spring constant of the support leg in the eccentric phase. The spring constant in the eccentric phase increased with the velocity of motion in running, the long jump take-off and the triple jump. This suggests that it may be possible to use this parameter as a measure of mechanical performance, as it may reflect the combined elasticity of muscles, tendons, and bones.  相似文献   
62.
In order to determine the maximum joint stiffness that could be produced by cocontraction of wrist flexor and extensor muscles, experiments were conducted in which healthy human subjects stabilized a wrist manipulandum that was made mechanically unstable by using positive position feedback to create a load with the characteristics of a negative spring. To determine a subject's limit of stability, the negative stiffness of the manipulandum was increased by increments until the subject could no longer reliably stabilize the manipulandum in a 1° target window. Static wrist stiffness was measured by applying a 3° rampand-hold displacement of the manipulandum, which stretched the wrist flexor muscles. As the load stiffness was made more and more negative, subjects responded by increasing the level of cocontraction of flexor and extensor muscles to increase the stiffness of the wrist. The stiffness measured at a subject's limit of stability was taken as the maximum stiffness that the subject could achieve by cocontraction of wrist flexor and extensor muscles. In almost all cases, this value was as large or larger than that measured when the subject was asked to cocontract maximally to stiffen the wrist in the absence of any load. Static wrist stiffness was also measured when subjects reciprocally activated flexor or extensor muscles to hold the manipulandum in the target window against a load generated by a stretched spring. We found a strong linear correlation between wrist stiffness and flexor torque over the range of torques used in this study (20–80% maximal voluntary contraction). The maximum stiffness achieved by cocontraction of wrist flexor and extensor muscles was less than 50% of the maximum value predicted from the joint stiffness measured during matched reciprocal activation of flexor and extensor muscles. EMG recorded from either wrist flexor or extensor muscles during maximal cocontraction confirmed that this reduced stiffness was due to lower levels of activation during cocontraction of flexor and extensor muscles than during reciprocal contraction.  相似文献   
63.
We previously demonstrated that growth and remodeling was stimulated in arteries elongated ex vivo using step increases in axial strain. Viability and vasoactivity were similar to fresh arteries, however there was a substantial decrease in the ultimate circumferential stress. To test the hypothesis that the subphysiological perfusion conditions (i.e., low pressure and flow) previously used caused the reduction, arteries were subjected to the identical elongation protocol (50% increase over 9 days) while being perfused with physiological levels of flow, viscosity and pulsatile pressure. A significant increase in unloaded length was achieved by elongation under both perfusion conditions, although the increase was less under physiological (7 ± 1%) than under subphysiological conditions (19 ± 2%, p < 0.005). When length at physiological stress was estimated using mechanical testing data the values were similar. The ultimate circumferential stress of arteries elongated under physiological conditions was increased (33%), whereas the ultimate axial stress was decreased (50%) as compared with arteries elongated under subphysiological conditions. Elongated arteries under both perfusion conditions showed significant increases in proliferation and collagen mass, and similar viability and appearance to fresh arteries. These data suggest that there is substantial cross-talk between perfusion conditions and axial strain that modulates arterial remodeling and length.  相似文献   
64.
Summary To quantify the effect of 60 mm Hg lower-body positive pressure (LBPP) on orthostatic blood-volume shifts, the mass densities (±0.1 g· l–1) of antecubital venous blood and plasma were measured in five men (27–42 years) during combined tilt table/antigravity suit inflation and deflation experiments. The densities of erythrocytes, whole-body blood, and of the shifted fluid were computed and the magnitude of fluid and protein shifts were calculated during head-up tilt (60°) with and without application of LBPP. During 30-min head-up tilt with LBPP, blood density (BD) and plasma density (PD) increased by 1.6±0.3 g · l–1, and by 0.8±0.2 g · l–1 (±SD) (N=9), respectively. In the subsequent period of tilt without LBPP, BD and PD increased further to +3.6±0.9 g · l–1, and to +2.0±0.7 g · l–1 (N=7) compared to supine control. The density increases in both periods were significant (p<0.05). Erythrocyte density remained unaltered with changes in body position and pressure suit inflation/deflation. Calculated shifted-fluid densities (FD) during tilt with LBPP (1006.0±1.1 g · l–1,N=9), and for subsequent tilt after deflation (1002.8±4.1 g · l–1,N=7) were different from each other (p<0.03). The plasma volume decreased by 6.0±1.2% in the tilt-LBPP period, and by an additional 6.4±2.7% of the supine control level in the subsequent postdeflation tilt period. The corresponding blood volume changes were 3.7±0.7% (p<0.01), and 3.5±2.1% (p<0.05), respectively. Thus, about half of the postural hemoconcentration occurring during passive head-up tilt was prevented by application of 60 mm Hg LBPP.H. Hinghofer-Szalkay was a European Space Agency fellow on leave from the Physiological Institute, Karl-Franzens-University, A-8010 Graz, Austria.  相似文献   
65.
A computer controlled mechanical lung model has been developed for testing lung function equipment, validation of computer programs and simulation of impaired pulmonary mechanics. The construction, function and some applications are described. The physical model is constructed from two bellows and a pipe system representing the alveolar lung compartments of both lungs and airways, respectively. The bellows are surrounded by water simulating pleural and interstitial space. Volume changes of the bellows are accomplished via the fluid by a piston. The piston is driven by a servo-controlled electrical motor whose input is generated by a microcomputer. A wide range of breathing patterns can be simulated. The pipe system representing the trachea connects both bellows to the ambient air and is provided with exchangeable parts with known resistance. A compressible element (CE) can be inserted into the pipe system. The fluid-filled space around the CE is connected with the water compartment around the bellows; The CE is made from a stretched Penrose drain. The outlet of the pipe system can be interrupted at the command of an external microcomputer system. An automatic sequence of measurements can be programmed and is executed without the interaction of a technician.  相似文献   
66.
The Achilles tendon is one of the most frequently injured tendons in humans, and yet the mechanisms underlying its injury are not well understood. This study examines the ex vivo mechanical behavior of excised human Achilles tendons to elucidate the relationships between mechanical loading and Achilles tendon injury. Eighteen tendons underwent creep testing at constant stresses from 35 to 75 MPa. Another 25 tendons underwent sinusoidal cyclic loading at 1 Hz between a minimum stress of 10 MPa and maximum stresses of 30–80 MPa. For the creep specimens, there was no significant relationship between applied stress and time to failure, but time to failure decreased exponentially with increasing initial strain (strain when target stress is first reached) and decreasing failure strain. For the cyclically loaded specimens, secant modulus decreased and cyclic energy dissipation increased over time. Time and cycles to failure decreased exponentially with increasing applied stress, increasing initial strain (peak strain from first loading cycle), and decreasing failure strain. For both creep and cyclic loading, initial strain was the best predictor of time or cycles to failure, supporting the hypothesis that strain is the primary mechanical parameter governing tendon damage accumulation and injury. The cyclically loaded specimens failed faster than would be expected if only time-dependent damage occurred, suggesting that repetitive loading also contributes to Achilles tendon injuries. © 2003 Biomedical Engineering Society. PAC2003: 8719Rr  相似文献   
67.
一种测量牙松动度的新方法   总被引:5,自引:0,他引:5  
本文是出了一种客观确定牙松动的新方法。用瞬态碰撞激震测定牙固有振动半周期T/2和减幅系数η。以T/2为主,η为辅,度量牙齿的松动度。对依据的原理从牙周动力学模型出发进行了严密的数学推导;讨论了测试方案;介绍了牙模型测试实验;最后给出实际状态下测试的初步结果。  相似文献   
68.
Sensitivity to heartbeat sensations is commonly assessed using tasks that require individuals to judge the simultaneity of heartbeats and tones. In two experiments, we investigated the suitability of this paradigm for examining cardioception. In the first experiment, participants judged the simultaneity of near–threshold vibrations and suprathreshold tones. Precision in judging vibration–tone simultaneity was directly related to the detectability of the mechanical stimuli, thereby supporting use of the simultaneity paradigm to assess heartbeat detection. In the second experiment, we examined the influences of sensitivity to mechanical stimuli and the ability to make intermodality simultaneity judgments on the precision of heartbeat detection. We measured participants' vibrotactile thresholds, precision in judging light–tone simultaneity, and precision in judging heartbeat–tone simultaneity. The ability to judge the simultaneity of lights and tones accounted for 24.3% of the variance in precision of heartbeat detection, and mechanical sensitivity accounted for a further 8.5%.  相似文献   
69.
Oxygen consumption at steady state (V˙O 2, l · min−1) and mechanical power (, W) were measured in five subjects riding a human-powered vehicle (HPV, the Karbyk, a four-wheeled recumbent cycle) on a flat concrete road at constant sub-maximal speeds. The external mechanical work spent per unit of distance (W, J · m−1), as calculated from the ratio of to the speed (v, m · s−1), was found to increase with the square of v: =8.12+(0.262 ·v 2) (r=0.986, n=31), where the first term represents the mechanical energy wasted, over a unit of distance, against frictional forces (rolling resistance, Rr), and the second term (k · v 2) is the work performed, per unit distance, to overcome the air drag. The rolling coefficient (Cr, obtained dividing Rr by m · g, where m is the overall mass and g is the acceleration of gravity) amounted to [mean (SD)] 0.0084 (0.0008), that is about 60% higher than that of a racing bicycle. The drag coefficient was calculated from the measured values of k, air density (ρ) and frontal area (A) [Cx=k · (0.5 · A · ρ)−1], and amounted to 1.067 (0.029), that is about 20% higher than that of a racing bicycle. The energy cost of riding the HPV (Ck, J · m−1) was measured from the ratio of metabolic power above rest (net V˙O 2, expressed in J · s−1) to the speed (v, m · s−1); the value of this parameter increased with the square of v, as described by: Ck=61.45 + (0.675 · v 2) (r=0.711, n=23). The net mechanical efficiency (η) was calculated from the ratio of W to Ck: over the investigated speed range this turned out to be 0.22 (0.021). Best performance times (BPTs) of a “typical”élite athlete riding the Karbyk were calculated over the distances of 1, 5 and 10 km: these were about 8% longer than the BPTs calculated, on the same subjects, when riding a conventional racing bicycle. Accepted: 7 August 2000  相似文献   
70.
The capacity for functional adaptation within the skeleton was studied using the functionally isolated turkey ulna preparation. The results of this study would suggest that adaptive bone remodeling is extremely sensitive to alterations in both the magnitude and distribution of the strain generated within the bone tissue. At present, it appears that a loading regime can only influence bone remodeling when it is dynamic in nature. The full osteogenic potential of its influence is then achieved after only an extremely short exposure to this stimulus. The potency of the stimulus appears to be proportional to the magnitude of the strain engendered. As strain levels that are acceptable in one location induce adaptive remodeling in others, it would appear that each region of each bone is "genetically programmed" to accept a particular amount and pattern of intermittent strain as "normal." Deviation from this "optimal strain environment" will stimulate changes in the bone's remodeling balance, resulting in adaptive increases or decreases in its mass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号