首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3730篇
  免费   253篇
  国内免费   79篇
耳鼻咽喉   15篇
儿科学   37篇
妇产科学   65篇
基础医学   645篇
口腔科学   132篇
临床医学   318篇
内科学   450篇
皮肤病学   115篇
神经病学   724篇
特种医学   115篇
外科学   393篇
综合类   227篇
现状与发展   2篇
预防医学   130篇
眼科学   197篇
药学   238篇
中国医学   83篇
肿瘤学   176篇
  2024年   11篇
  2023年   85篇
  2022年   159篇
  2021年   178篇
  2020年   155篇
  2019年   149篇
  2018年   143篇
  2017年   128篇
  2016年   117篇
  2015年   118篇
  2014年   240篇
  2013年   232篇
  2012年   195篇
  2011年   227篇
  2010年   206篇
  2009年   175篇
  2008年   184篇
  2007年   186篇
  2006年   160篇
  2005年   128篇
  2004年   104篇
  2003年   110篇
  2002年   82篇
  2001年   73篇
  2000年   74篇
  1999年   51篇
  1998年   55篇
  1997年   54篇
  1996年   41篇
  1995年   28篇
  1994年   21篇
  1993年   14篇
  1992年   15篇
  1991年   14篇
  1990年   17篇
  1989年   13篇
  1988年   21篇
  1987年   14篇
  1986年   8篇
  1985年   21篇
  1984年   8篇
  1983年   9篇
  1982年   11篇
  1981年   9篇
  1980年   6篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
排序方式: 共有4062条查询结果,搜索用时 15 毫秒
101.
Endocytic recycling of synaptic vesicles after exocytosis is critical for nervous system function. At synapses of cultured neurons that lack the two "neuronal" dynamins, dynamin 1 and 3, smaller excitatory postsynaptic currents are observed due to an impairment of the fission reaction of endocytosis that results in an accumulation of arrested clathrin-coated pits and a greatly reduced synaptic vesicle number. Surprisingly, despite a smaller readily releasable vesicle pool and fewer docked vesicles, a strong facilitation, which correlated with lower vesicle release probability, was observed upon action potential stimulation at such synapses. Furthermore, although network activity in mutant cultures was lower, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity was unexpectedly increased, consistent with the previous report of an enhanced state of synapsin 1 phosphorylation at CaMKII-dependent sites in such neurons. These changes were partially reversed by overnight silencing of synaptic activity with tetrodotoxin, a treatment that allows progression of arrested endocytic pits to synaptic vesicles. Facilitation was also counteracted by CaMKII inhibition. These findings reveal a mechanism aimed at preventing synaptic transmission failure due to vesicle depletion when recycling vesicle traffic is backed up by a defect in dynamin-dependent endocytosis and provide new insight into the coupling between endocytosis and exocytosis.  相似文献   
102.
Genetic events underlying pathogenesis of nodal and extranodal marginal zone lymphoma are not completely understood. We report here a novel t(X;14)(p11.4;q32.33) identified in 4 lymphoma cases: 2 with a mucosa-associated lymphoid tissue lymphoma, one with a nodal marginal zone lymphoma and one with gastric diffuse large B-cell lymphoma. In all cases, lymphoma evolved from a previous auto-immune disorder. Fluorescence in situ hybridization and molecular studies showed that t(X;14), which is mediated by immunoglobulin heavy chain locus, targets the GPR34 gene at Xp11.4. Upregulation of GPR34 mRNA and aberrant expression of GPR34 protein has been demonstrated in 3 presented cases by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. GPR34 belongs to the largest family of cell surface molecules involved in signal transmission that play important roles in many physiological and pathological processes, including tumorigenesis. Although functional consequences of t(X;14) have not been identified, our studies suggest that up-regulated GPR34 activate neither nuclear factor-κB nor ELK-related tyrosine kinase.  相似文献   
103.
104.
Identification of the Slow Conduction Zone in a Macroreentry. Background: Although idiopathic left ventricular tachycardia (ILVT) has been shown to possess a slow conduction zone (SCZ), the details of the electrophysiological and anatomic aspects are still not well understood. Objective: We hypothesized that the SCZ can be identified using a 3‐dimensional electroanatomic (EA) mapping system. Methods : Ten patients with ILVT were mapped using a 3‐dimensional electroanatomic (EA) mapping system. After a 3‐dimensional endocardial geometry of the left ventricular was created, the conduction system with left Purkinje potential (PP) and the SCZ with diastolic potential (DP) in LV were mapped during sinus rhythm (SR) and ventricular tachycardia (VT) and were tagged as special landmarks in the geometry. The electrophysiological and anatomic aspects of it were investigated. Results: EA mapping during SR and VT was successfully performed in 7 patients, during VT in 3 patients. The SCZ with DPs located at the inferoposterior septum was found in 7 patients during SR and all patients during VT. The length of the SCZ was 25.2 ± 2.3 mm with conduction velocity 0.08 ± 0.01 m/s. No differences in these parameters were found between patients during SR and VT (P > 0.05). An area with PP was found within the posterior septum. A crossover junction area with DP and PP was found in 7 patients during SR and VT. This area with DP and PP during SR coincided or were in proximity to such area during VT and radiofrequency ablation targeting the site within the area abolished VT in all patients. Conclusion: The ILVT substrate within the junction area of the SCZ and the posterior fascicular can be identified and can be used to guide the ablation of ILVT. (J Cardiovasc Electrophysiol, Vol. 23, pp. 840‐845, August 2012)  相似文献   
105.
超声引导高强度聚焦超声治疗肌壁间子宫肌瘤的效果   总被引:1,自引:1,他引:0  
目的探讨超声引导高强度聚焦超声(HIFU)治疗肌壁间子宫肌瘤的效果及其对前、后壁子宫肌瘤疗效的差异。方法对54例症状性肌壁间子宫肌瘤患者行超声引导下HIFU治疗;消融后当日或次日及术后3个月时行增强MR检查,评估肌瘤消融范围并计算消融率:消融率≥50%为显效,0<消融率<50%为有效,增强信号无减低为消融无效。结果共消融治疗肌壁间子宫肌瘤57个,其中前壁肌瘤32个,后壁肌瘤25个;消融前肌瘤体积为16.27~502.12cm3,消融后增强MRI显示无灌注区域体积为5.75~292.42cm3,平均消融率为(68.14±16.19)%,显效率为89.47%(51/57),有效率为100%(57/57)。3个月后消融肌瘤无灌注区域体积较术后1天或次日进一步缩小(t=6.365,P<0.05)。前壁肌瘤平均消融率为(74.35±12.24)%,后壁肌瘤平均消融率为(60.93±17.62)%,差异有统计学意义(t=2.366,P<0.05)。结论超声引导HIFU治疗肌壁间子宫肌瘤安全、有效,对前壁肌瘤的消融率高于后壁肌瘤。  相似文献   
106.
Mobilization of remyelinating cells spontaneously occurs in the adult brain. These cellular resources are specially active after demyelinating episodes in early phases of multiple sclerosis (MS). Indeed, oligodendrocyte precursor cells (OPCs) actively proliferate, migrate to and repopulate the lesioned areas. Ultimately, efficient remyelination is accomplished when new oligodendrocytes reinvest nude neuronal axons, restoring the normal properties of impulse conduction. As the disease progresses this fundamental process fails. Multiple causes seem to contribute to such transient decline, including the failure of OPCs to differentiate and enwrap the vulnerable neuronal axons. Regenerative medicine for MS has been mainly centered on the recruitment of endogenous self-repair mechanisms, or on transplantation approaches. The latter commonly involves grafting of neural precursor cells (NPCs) or neural stem cells (NSCs), with myelinogenic potential, in the injured areas. Both strategies require further understanding of the biology of oligodendrocyte differentiation and remyelination. Indeed, the success of transplantation largely depends on the pre-commitment of transplanted NPCs or NSCs into oligodendroglial cell type, while the endogenous differentiation of OPCs needs to be boosted in chronic stages of the disease. Thus, much effort has been focused on finding molecular targets that drive oligodendrocytes commitment and development. The present review explores several aspects of remyelination that must be considered in the design of a cell-based therapy for MS, and explores more deeply the challenge of fostering oligodendrogenesis. In this regard, we discuss herein a tool developed in our research group useful to search novel oligodendrogenic factors and to study oligodendrocyte differentiation in a time- and cost-saving manner.  相似文献   
107.
Adult-born neurons in crayfish (Procambarus clarkii) are the progeny of 1st-generation precursor cells (functionally analogous to neuronal stem cells in vertebrates) that are located in a neurogenic niche on the ventral surface of the brain. The daughters of these precursor cells migrate along the processes of bipolar niche cells to proliferation zones in the cell clusters where the somata of the olfactory interneurons reside. Here they divide again, producing offspring that differentiate into olfactory local and projection neurons. The features of this neuronal assembly line, and the fact that it continues to function when the brain is isolated and perfused or maintained in organotypic culture, provide opportunities unavailable in other organisms to explore the sequence of cellular and molecular events leading to the production of new neurons in adult brains. Further, we have determined that the 1st-generation precursor cells are not a self-renewing population, and that the niche is, nevertheless, not depleted as the animals grow and age. We conclude, therefore, that the niche is not a closed system and that there must be an extrinsic source of neuronal stem cells. Based on in vitro studies demonstrating that cells extracted from the hemolymph are attracted to the niche, as well as the intimate relationship between the niche and vasculature, we hypothesize that the hematopoietic system is a likely source of these cells.  相似文献   
108.
Radial glia‐like cells (RGCs) are the hypothesized source of adult hippocampal neurogenesis. However, the current model of hippocampal neurogenesis does not fully incorporate the in vivo heterogeneity of RGCs. In order to better understand the contribution of different RGC subtypes to adult hippocampal neurogenesis, we employed widely used transgenic lines (Nestin‐CreERT2 and GLAST::CreERT2 mice) to explore how RGCs contribute to neurogenesis under basal conditions and after stimulation and depletion of neural progenitor cells. We first used these inducible fate‐tracking transgenic lines to define the similarities and differences in the contribution of nestin‐ and GLAST‐lineage cells to basal long‐term hippocampal neurogenesis. We then explored the ability of nestin‐ and GLAST‐lineage RGCs to contribute to neurogenesis after experimental manipulations that either ablate neurogenesis (i.c.v. application of the anti‐mitotic AraC, cytosine‐β‐D‐arabinofuranoside) or stimulate neurogenesis (wheel running). Interestingly, in both ablation and stimulation experiments, labeled RGCs in GLAST::CreERT2 mice appear to contribute to neurogenesis, whereas RGCs in Nestin‐CreERT2 mice do not. Finally, using NestinGFP reporter mice, we expanded on previous research by showing that not all RGCs in the adult dentate gyrus subgranular zone express nestin, and therefore RGCs are antigenically heterogeneous. These findings are important for the field, as they allow appropriately conservative interpretation of existing and future data that emerge from these inducible transgenic lines. These findings also raise important questions about the differences between transgenic driver lines, the heterogeneity of RGCs, and the potential differences in progenitor cell behavior between transgenic lines. As these findings highlight the possible differences in the contribution of cells to long‐term neurogenesis in vivo, they indicate that the current models of hippocampal neurogenesis should be modified to include RGC lineage heterogeneity. © 2013 Wiley Periodicals, Inc.  相似文献   
109.
The neurotransmitter dopamine acts on the subventricular zone (SVZ) to regulate both prenatal and postnatal neurogenesis, in particular through D3 receptor (D3R) subtype. In this study, we explored the cellular mechanism(s) underlying D3R‐mediated cell proliferation and tested if systemic delivery of a D3R agonist would induce SVZ multipotent neural stem/precursor cell (NSC/NPC) proliferation in vivo. We found that treatment with the D3R agonist, 7‐OH‐DPAT, enhances cell proliferation in a dose‐dependent manner in cultured SVZ neurospheres from wild‐type, but not D3R knock‐out mice. Furthermore, D3R activation also stimulates S‐phase and enhances mRNA and protein levels of cyclin D1 in wild‐type neurospheres, a process which requires cellular Akt and ERK1/2 signaling. Moreover, chronic treatment with low dose 7‐OH‐DAPT in vivo increases BrdU+ cell numbers in the adult SVZ, but this effect was not seen in D3R KO mice. Additionally, we probed the cell type specificity of D3R agonist‐mediated cell proliferation. We found that in adult SVZ, GFAP+ astrocytes, type‐B GFAP+/nestin+ and type‐C EGF receptor (EGFR+)/nestin+ cells express D3R mRNA, but type‐A Doublecortin (Dcx)+ neuroblasts do not. Using flow cytometry and immunofluorescence, we demonstrated that D3R activation increases GFAP+ type‐B and EGFR+ type‐C cell numbers, and the newly divided Dcx+ type‐A cells. However, BrdU+/Dcx+ cell numbers were decreased in D3R KO mice compared to wildtype, suggesting that D3R maintains constitutive NSC/NPCs population in the adult SVZ. Overall, we demonstrate that D3R activation induces NSC/NPC proliferation through Akt and ERK1/2 signaling and increases the numbers of type‐B and ‐C NSC/NPCs in the adult SVZ. © 2013 Wiley Periodicals, Inc.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号