首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   250篇
妇产科学   2篇
基础医学   2篇
临床医学   8篇
内科学   17篇
神经病学   10篇
外科学   529篇
综合类   26篇
预防医学   6篇
中国医学   35篇
  2022年   21篇
  2021年   50篇
  2020年   51篇
  2019年   43篇
  2018年   41篇
  2017年   52篇
  2016年   46篇
  2015年   46篇
  2014年   65篇
  2013年   82篇
  2012年   39篇
  2011年   30篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
排序方式: 共有635条查询结果,搜索用时 109 毫秒
631.
The 3-year FREEDOM trial assessed the efficacy and safety of 60 mg denosumab every 6 months for the treatment of postmenopausal women with osteoporosis. Participants who completed the FREEDOM trial were eligible to enter an extension to continue the evaluation of denosumab efficacy and safety for up to 10 years. For the extension results presented here, women from the FREEDOM denosumab group had 2 more years of denosumab treatment (long-term group) and those from the FREEDOM placebo group had 2 years of denosumab exposure (cross-over group). We report results for bone turnover markers (BTMs), bone mineral density (BMD), fracture rates, and safety. A total of 4550 women enrolled in the extension (2343 long-term; 2207 cross-over). Reductions in BTMs were maintained (long-term group) or occurred rapidly (cross-over group) following denosumab administration. In the long-term group, lumbar spine and total hip BMD increased further, resulting in 5-year gains of 13.7% and 7.0%, respectively. In the cross-over group, BMD increased at the lumbar spine (7.7%) and total hip (4.0%) during the 2-year denosumab treatment. Yearly fracture incidences for both groups were below rates observed in the FREEDOM placebo group and below rates projected for a "virtual untreated twin" cohort. Adverse events did not increase with long-term denosumab administration. Two adverse events in the cross-over group were adjudicated as consistent with osteonecrosis of the jaw. Five-year denosumab treatment of women with postmenopausal osteoporosis maintained BTM reduction and increased BMD, and was associated with low fracture rates and a favorable risk/benefit profile.  相似文献   
632.
Reduction of bone turnover with bisphosphonate treatment alters bone mineral and matrix properties. Our objective was to investigate the effect of bisphosphonate treatment on bone tissue properties near fragility fracture sites in the proximal femur in postmenopausal women with osteoporosis. The mineral and collagen properties of corticocancellous biopsies from the proximal femur were compared in bisphosphonate-naive (-BIS, n = 20) and bisphosphonate-treated (+BIS, n = 20, duration 7 ± 5 years) patients with intertrochanteric (IT) and subtrochanteric (ST) fractures using Fourier transform infrared imaging (FTIRI). The mean values of the FTIRI parameter distributions were similar across groups, but the widths of the parameter distributions tended to be reduced in the +BIS group relative to the -BIS group. Specifically, the widths of the cortical collagen maturity and crystallinity were reduced in the +BIS group relative to those of the -BIS group by 28% (+BIS 0.45 ± 0.18 versus -BIS 0.63 ± 0.28, p = 0.03) and 17% (+BIS 0.087 ± 0.012 versus -BIS 0.104 ± 0.036, p = 0.05), respectively. When the tissue properties were examined as a function of fracture morphology within the +BIS group, the FTIR parameters were generally similar regardless of fracture morphology. However, the cortical mineral:matrix ratio was 8% greater in tissue from patients with atypical ST fractures (n = 6) than that of patients with typical (IT or spiral ST) fractures (n = 14) (Atypical 5.6 ± 0.3 versus Typical 5.2 ± 0.5, p = 0.03). Thus, although the mean values of the FTIR properties were similar in both groups, the tissue in bisphosphonate-treated patients had a more uniform composition than that of bisphosphonate-naive patients. The observed reductions in mineral and matrix heterogeneity may diminish tissue-level toughening mechanisms.  相似文献   
633.
This study compared microscopic magnetic resonance imaging (μMRI) parameters of trabecular microarchitecture between postmenopausal women with and without fracture who have normal or osteopenic bone mineral density (BMD) on dual-energy X-ray absorptiometry (DXA). It included 36 postmenopausal white women 50 years of age and older with normal or osteopenic BMD (T-scores better than -2.5 at the lumbar spine, proximal femur, and one-third radius on DXA). Eighteen women had a history of low-energy fracture, whereas 18 women had no history of fracture and served as an age, race, and ultradistal radius BMD-matched control group. A three-dimensional fast large-angle spin-echo (FLASE) sequence with 137 μm × 137 μm × 400 μm resolution was performed through the nondominant wrist of all 36 women using the same 1.5T scanner. The high-resolution images were used to measure trabecular bone volume fraction, trabecular thickness, surface-to-curve ratio, and erosion index. Wilcoxon signed-rank tests were used to compare differences in BMD and μMRI parameters between postmenopausal women with and without fracture. Post-menopausal women with fracture had significantly lower (p < 0.05) trabecular bone volume fraction and surface-to-curve ratio and significantly higher (p < 0.05) erosion index than postmenopausal women without fracture. There was no significant difference between postmenopausal women with and without fracture in trabecular thickness (p = 0.80) and BMD of the spine (p = 0.21), proximal femur (p = 0.19), one-third radius (p = 0.47), and ultradistal radius (p = 0.90). Postmenopausal women with normal or osteopenic BMD who had a history of low-energy fracture had significantly different (p < 0.05) μMRI parameters than an age, race, and ultradistal radius BMD-matched control group of postmenopausal women with no history of fracture. Our study suggests that μMRI can be used to identify individuals without a DXA-based diagnosis of osteoporosis who have impaired trabecular microarchitecture and thus a heretofore-unappreciated elevated fracture risk.  相似文献   
634.
We present a case of a 61-year-old female with history of long-term bisphosphonate therapy for osteoporosis initially diagnosed by screening dual-energy X-ray absorptiometry (DXA). After 4 years of treatment with bisphosphonates, the patient presented to primary care with left hip pain. Diagnostic hip radiographs were interpreted as normal, and she continued to take bisphosphonates. Two months later, she experienced a complete transverse subtrochanteric left femur fracture after minimal trauma. The patient underwent open reduction and internal fixation. Review of the patient's postoperative films revealed lateral subtrochanteric cortical beaking at the fracture. This type of "atypical" fracture has been reported to be a result of chronic bisphosphonate-associated fractures with high specificity. In addition, the right femur also showed cortical beaking with a horizontal linear lucency in an identical location, suggesting an impending fracture. Longitudinal review of the both diagnostic radiographs as well as DXA images shows a stepwise development of these subtrochanteric abnormalities in both femurs. A current hypothesis regarding the pathophysiology of bisphosphonate-associated fracture is that the medication inhibits bone turnover and repair of microscopic trauma. A cycle of defective repair and continual microtrauma compounded over time gradually weakens the bone and creates an architectural conduit for transverse or "atypical" fracture. Standard practice is not to use DXA as a diagnostic "image." We present this case to show that a common location and classic appearance of subtrochanteric bisphosphonate-associated fractures may be clearly visualized on absorptiometry images long before fracture. This observation is important because the majority of patients taking bisphosphonate therapy also receive regular DXA imaging. Because of the chronicity of standard bone-density monitoring for these patients throughout their treatment regimen, DXA may find a role for early detection of cortical abnormalities.  相似文献   
635.
Spinal cord injury (SCI) results in profound bone loss due to muscle paralysis and the inability to ambulate. Sclerostin, a Wnt signaling pathway antagonist produced by osteocytes, is a potent inhibitor of bone formation. Short-term studies in rodent models have shown increased sclerostin in response to mechanical unloading that is reversed with reloading. These studies suggest that complete spinal cord injury, a condition resulting in mechanical unloading of the paralyzed lower extremities, will be associated with high sclerostin levels. We assessed the relationship between circulating sclerostin and bone density in 39 subjects with chronic SCI and 10 without SCI. We found that greater total limb bone mineral content was significantly associated with greater circulating levels of sclerostin. Sclerostin levels were reduced, not elevated, in subjects with SCI who use a wheelchair compared with those with SCI who walk regularly. Similarly, sclerostin levels were lower in subjects with SCI who use a wheelchair compared with persons without SCI who walk regularly. These findings suggest that circulating sclerostin is a biomarker of osteoporosis severity, not a mediator of ongoing bone loss, in long-term, chronic paraplegia. This is in contrast to the acute sclerostin-mediated bone loss shown in animal models of mechanical unloading in which high sclerostin levels suppress bone formation. Because these data indicate important differences in the relationship between mechanical unloading, sclerostin, and bone in chronic SCI compared with short-term rodent models, it is likely that sclerostin is not a good therapeutic target to treat chronic SCI-induced osteoporosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号