首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   250篇
妇产科学   2篇
基础医学   2篇
临床医学   8篇
内科学   17篇
神经病学   10篇
外科学   529篇
综合类   26篇
预防医学   6篇
中国医学   35篇
  2022年   21篇
  2021年   50篇
  2020年   51篇
  2019年   43篇
  2018年   41篇
  2017年   52篇
  2016年   46篇
  2015年   46篇
  2014年   65篇
  2013年   82篇
  2012年   39篇
  2011年   30篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
排序方式: 共有635条查询结果,搜索用时 15 毫秒
21.
We have recently observed an increased risk for vertebral fractures (VF) in a randomized controlled trial comparing the analgesic effect of vertebroplasty (VP) versus conservative treatment in symptomatic VF. The aim of the present study was to evaluate the risk factors related to the development of VF after VP in these patients. We evaluated risk factors including age, gender, bone mineral density, the number, type, and severity of vertebral deformities at baseline, the number of vertebral bodies treated, the presence and location of disk cement leakage, bone remodeling (determining bone turnover markers) and 25 hydroxyvitamin D [25(OH)D] levels at baseline in all patients. Twenty‐nine radiologically new VF were observed in 17 of 57 patients undergoing VP, 72% adjacent to the VP. Patients developing VF after VP showed an increased prevalence of 25(OH)D deficiency (<20 ng/mL) and higher P1NP values. The principal factor related to the development of VF after VP in multivariate analysis was 25(OH)D levels < 20 ng/mL (RR, 15.47; 95% CI, 2.99–79.86, p < 0.0001), whereas age >80 years (RR, 3.20; 95% CI, 1.70–6.03, p = 0.0007) and glucocorticoid therapy (RR, 3.64; 95% CI, 1.61–8.26, p = 0.0055) constituted the principal factors in the overall study population. Increased risk of VF after VP was also associated with cement leakage into the inferior disk (RR, 6.14; 95% CI, 1.65–22.78, p = 0.044) and more than one vertebral body treated during VP (RR, 4.19; 95% CI, 1.03–34.3, p = 0.044). In conclusion, nearly 30% of patients with osteoporotic VF treated with VP had a new VF after the procedure. Age, especially >80 years, the presence of inferior disk cement leakage after the procedure, the number of cemented vertebrae, and low 25(OH)D serum levels were related to the development of new VF in these patients, with the latter indicating the need to correct vitamin D deficiency prior to performing VP.  相似文献   
22.
A huge number of risk assessment tools have been developed. Far from all have been validated in external studies, more of them have absence of methodological and transparent evidence, and few are integrated in national guidelines. Therefore, we performed a systematic review to provide an overview of existing valid and reliable risk assessment tools for prediction of osteoporotic fractures. Additionally, we aimed to determine if the performance of each tool was sufficient for practical use, and last, to examine whether the complexity of the tools influenced their discriminative power. We searched PubMed, Embase, and Cochrane databases for papers and evaluated these with respect to methodological quality using the Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS) checklist. A total of 48 tools were identified; 20 had been externally validated, however, only six tools had been tested more than once in a population‐based setting with acceptable methodological quality. None of the tools performed consistently better than the others and simple tools (i.e., the Osteoporosis Self‐assessment Tool [OST], Osteoporosis Risk Assessment Instrument [ORAI], and Garvan Fracture Risk Calculator [Garvan]) often did as well or better than more complex tools (i.e., Simple Calculated Risk Estimation Score [SCORE], WHO Fracture Risk Assessment Tool [FRAX], and Qfracture). No studies determined the effectiveness of tools in selecting patients for therapy and thus improving fracture outcomes. High‐quality studies in randomized design with population‐based cohorts with different case mixes are needed.  相似文献   
23.
Dysregulated transforming growth factor beta (TGF‐β) signaling is associated with a spectrum of osseous defects as seen in Loeys‐Dietz syndrome, Marfan syndrome, and Camurati‐Engelmann disease. Intriguingly, neurofibromatosis type 1 (NF1) patients exhibit many of these characteristic skeletal features, including kyphoscoliosis, osteoporosis, tibial dysplasia, and pseudarthrosis; however, the molecular mechanisms mediating these phenotypes remain unclear. Here, we provide genetic and pharmacologic evidence that hyperactive TGF‐β1 signaling pivotally underpins osseous defects in Nf1flox/?;Col2.3Cre mice, a model which closely recapitulates the skeletal abnormalities found in the human disease. Compared to controls, we show that serum TGF‐β1 levels are fivefold to sixfold increased both in Nf1flox/?;Col2.3Cre mice and in a cohort of NF1 patients. Nf1‐deficient osteoblasts, the principal source of TGF‐β1 in bone, overexpress TGF‐β1 in a gene dosage–dependent fashion. Moreover, Nf1‐deficient osteoblasts and osteoclasts are hyperresponsive to TGF‐β1 stimulation, potentiating osteoclast bone resorptive activity while inhibiting osteoblast differentiation. These cellular phenotypes are further accompanied by p21‐Ras–dependent hyperactivation of the canonical TGF‐β1–Smad pathway. Reexpression of the human, full‐length neurofibromin guanosine triphosphatase (GTPase)‐activating protein (GAP)‐related domain (NF1 GRD) in primary Nf1‐deficient osteoblast progenitors, attenuated TGF‐β1 expression levels and reduced Smad phosphorylation in response to TGF‐β1 stimulation. As an in vivo proof of principle, we demonstrate that administration of the TGF‐β receptor 1 (TβRI) kinase inhibitor, SD‐208, can rescue bone mass deficits and prevent tibial fracture nonunion in Nf1flox/?;Col2.3Cre mice. In sum, these data demonstrate a pivotal role for hyperactive TGF‐β1 signaling in the pathogenesis of NF1‐associated osteoporosis and pseudarthrosis, thus implicating the TGF‐β signaling pathway as a potential therapeutic target in the treatment of NF1 osseous defects that are refractory to current therapies. © 2013 American Society for Bone and Mineral Research.  相似文献   
24.
More accurate techniques to estimate fracture risk could help reduce the burden of fractures in postmenopausal women. Although micro‐finite element (µFE) simulations allow a direct assessment of bone mechanical performance, in this first clinical study we investigated whether the additional information obtained using geometrically and materially nonlinear µFE simulations allows a better discrimination between fracture cases and controls. We used patient data and high‐resolution peripheral quantitative computed tomography (HRpQCT) measurements from our previous clinical study on fracture risk, which compared 100 postmenopausal women with a distal forearm fracture to 105 controls. Analyzing these data with the nonlinear µFE simulations, the odds ratio (OR) for the factor‐of‐risk (yield load divided by the expected fall load) was marginally higher (1.99; 95% confidence interval [CI], 1.41–2.77) than for the factor‐of‐risk computed from linear µFE (1.89; 95% CI, 1.37–2.69). The yield load and the energy absorbed up to the yield point as computed from nonlinear µFE were highly correlated with the initial stiffness (R2 = 0.97 and 0.94, respectively) and could therefore be derived from linear simulations with little loss in precision. However, yield deformation was not related to any other measurement performed and was itself a good predictor of fracture risk (OR, 1.89; 95% CI, 1.39–2.63). Moreover, a combined risk score integrating information on relative bone strength (yield load‐based factor‐of‐risk), bone ductility (yield deformation), and the structural integrity of the bone under critical loads (cortical plastic volume) improved the separation of cases and controls by one‐third (OR, 2.66; 95% CI, 1.84–4.02). We therefore conclude that nonlinear µFE simulations provide important additional information on the risk of distal forearm fractures not accessible from linear µFE nor from other techniques assessing bone microstructure, density, or mass. © 2013 American Society for Bone and Mineral Research.  相似文献   
25.
The association between osteoporosis and cardiovascular diseases has been demonstrated. Higher cardiovascular risk has also been correlated with vertebral fractures. However, the association between osteoporotic vertebral fracture and the possibly higher risk of stroke remains uncertain. This study aimed to evaluate the incidence, risk, and type of stroke in patients with osteoporotic vertebral fracture. Patients with osteoporotic vertebral fracture were identified (n = 380) and 10 age‐ and sex‐matched controls per case (comparison group, n = 3795) were chosen from a nationwide representative cohort of 999,997 people from 1998 to 2005. Both groups were followed‐up for stroke events for 3 years, matched by propensity scores with adjustments for covariates such as comorbidities (ie, hypertension, diabetes, arrhythmia, or coronary heart diseases) and exposure to medications (ie, aspirin, lipid lowering drug, or nitrates), and assessed by Kaplan‐Meier and Cox regression analyses. The incidence rate of stroke in the osteoporotic vertebral fracture group (37.5 per 1000 person‐years; 95% confidence interval [CI], 27.5–51.2) was significantly higher than in the comparison group (14.0 per 1000 person‐years; 95% CI, 12.0–16.4, p < 0.001). Stroke was more likely to occur in the osteoporotic vertebral fracture patients than in the normal controls (crude hazard ratio [HR] 2.68, 95% CI 1.89–3.79, p < 0.001; adjusted HR 2.71, 95% CI 1.90–3.86, p < 0.001). In conclusion, patients with osteoporotic vertebral fracture have a higher risk of stroke (ie, both ischemic and hemorrhagic) and require stroke prevention strategies. © 2013 American Society for Bone and Mineral Research.  相似文献   
26.
Omega‐3 (n‐3) and omega‐6 (n‐6) polyunsaturated fatty acids (PUFA) in red blood cells (RBCs) are an objective indicator of PUFA status and may be related to hip fracture risk. The primary objective of this study was to examine RBC PUFAs as predictors of hip fracture risk in postmenopausal women. A nested case‐control study (n = 400 pairs) was completed within the Women's Health Initiative (WHI) using 201 incident hip fracture cases from the Bone Mineral Density (BMD) cohort, along with 199 additional incident hip fracture cases randomly selected from the WHI Observational Study. Cases were 1:1 matched on age, race, and hormone use with non–hip fracture controls. Stored baseline RBCs were analyzed for fatty acids using gas chromatography. After removing degraded samples, 324 matched pairs were included in statistical analyses. Stratified Cox proportional hazard models were constructed according to case‐control pair status; risk of fracture was estimated for tertiles of RBC PUFA. In adjusted hazard models, lower hip fracture risk was associated with higher RBC α‐linolenic acid (tertile 3 [T3] hazard ratio [HR]: 0.44; 95% confidence interval [CI], 0.23–0.85; p for linear trend 0.0154), eicosapentaenoic acid (T3 HR: 0.46; 95% CI, 0.24–0.87; p for linear trend 0.0181), and total n‐3 PUFAs (T3 HR: 0.55; 95% CI, 0.30–1.01; p for linear trend 0.0492). Conversely, hip fracture nearly doubled with the highest RBC n‐6/n‐3 ratio (T3 HR: 1.96; 95% CI, 1.03–3.70; p for linear trend 0.0399). RBC PUFAs were not associated with BMD. RBC PUFAs were indicative of dietary intake of marine n‐3 PUFAs (Spearman's rho = 0.45, p < 0.0001), total n‐6 PUFAs (rho = 0.17, p < 0.0001) and linoleic acid (rho = 0.09, p < 0.05). These results suggest that higher RBC α‐linolenic acid, as well as eicosapentaenoic acid and total n‐3 PUFAs, may predict lower hip fracture risk. Contrastingly, a higher RBC n‐6/n‐3 ratio may predict higher hip fracture risk in postmenopausal women. © 2013 American Society for Bone and Mineral Research.  相似文献   
27.
In contrast to traditional approaches to fracture risk assessment using clinical risk factors and bone mineral density (BMD), a new technique, reference point microindentation (RPI), permits direct assessment of bone quality; in vivo tibial RPI measurements appear to discriminate patients with a fragility fracture from controls. However, it is unclear how this relates to the site of the most clinically devastating fracture, the femoral neck, and whether RPI provides information complementary to that from existing assessments. Femoral neck samples were collected at surgery after low‐trauma hip fracture (n = 46; 17 male; aged 83 [interquartile range 77–87] years) and compared, using RPI (Biodent Hfc), with 16 cadaveric control samples, free from bone disease (7 male; aged 65 [IQR 61–74] years). A subset of fracture patients returned for dual‐energy X‐ray absorptiometry (DXA) assessment (Hologic Discovery) and, for the controls, a micro‐computed tomography setup (HMX, Nikon) was used to replicate DXA scans. The indentation depth was greater in femoral neck samples from osteoporotic fracture patients than controls (p < 0.001), which persisted with adjustment for age, sex, body mass index (BMI), and height (p < 0.001) but was site‐dependent, being less pronounced in the inferomedial region. RPI demonstrated good discrimination between fracture and controls using receiver‐operating characteristic (ROC) analyses (area under the curve [AUC] = 0.79 to 0.89), and a model combining RPI to clinical risk factors or BMD performed better than the individual components (AUC = 0.88 to 0.99). In conclusion, RPI at the femoral neck discriminated fracture cases from controls independent of BMD and traditional risk factors but dependent on location. The clinical RPI device may, therefore, supplement risk assessment and requires testing in prospective cohorts and comparison between the clinically accessible tibia and the femoral neck. © 2015 American Society for Bone and Mineral Research.  相似文献   
28.
Despite the multitude of studies published on atypical femoral fractures (AFFs), a profile for patients at risk does not exist. This study aimed first at estimating AFF incidence over a 19‐month‐period in Quebec City using the ASBMR Task force criteria to define AFF. The medical records of patients hospitalized for hip or femoral fracture between June 1, 2009, and December 31, 2010, were reviewed. Thirty‐six cases of atypical fractures were identified during the 19‐month period, representing an AFF incidence of 7.0 (range, 4.7 to 9.3) cases per 100,000 person‐years. In the second part of the study, data regarding the characteristics suspected of increasing the risks of AFF were collected from medical and pharmacological records, proximal femur radiographs, and patient interviews. The data regarding each patient with an AFF during years 2008‐2011 were compared to two controls with a hip or femoral fragility fracture or a traumatic fracture, paired for age and sex. Twenty patients with AFF were added to the 36 patients with AFF selected in the first part, thereby 56 patients with AFF were investigated. The association between the occurrence of AFF and bisphosphonates (BPs) use was proven statistically significant in multivariate analysis, odds ratio (OR) = 10.39 (95% CI, 2.22 to 48.58; p = 0.0029). Compared to controls, patients with AFF had excessive femoral offset (43.1 mm versus 38.3 mm, p = 0.0007), proximal femoral neck angle in varus (128.9 degrees versus 134.0 degrees, p < 0.0001), and had greater proximal cortical thickness. This retrospective study confirms the low incidence of AFF, confirms its significant association with exposure to BPs, and reveals the possible contribution of proximal femoral geometry in AFF occurrence. © 2016 American Society for Bone and Mineral Research.  相似文献   
29.
Height has been associated with increased risk of fracture of the neck of femur. However, information on the association of height with fractures at other sites is limited and conflicting. A total of 796,081 postmenopausal women, who reported on health and lifestyle factors including a history of previous fractures and osteoporosis, were followed for 8 years for incident fracture at various sites by record linkage to National Health Service hospital admission data. Adjusted relative risks of fracture at different sites per 10‐cm increase in height were estimated using Cox regression. Numbers with site‐specific fractures were: humerus (3036 cases), radius and/or ulna (1775), wrist (9684), neck of femur (5734), femur (not neck) (713), patella (649), tibia and/or fibula (1811), ankle (5523), and clavicle/spine/rib (2174). The risk of fracture of the neck of femur increased with increasing height (relative risk [RR] = 1.48 per 10‐cm increase, 99% confidence interval [CI] 1.39–1.57) and the proportional increase in risk was significantly greater than for all other fracture sites (pheterogeneity < 0.001). For the other sites, fracture risk also increased with height (RR = 1.15 per 10 cm, CI 1.12–1.18), but there was only very weak evidence of a possible difference in risk between the sites (pheterogeneity = 0.03). In conclusion, taller women are at increased risk of fracture, especially of the neck of femur. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   
30.
A Mediterranean diet, known to have beneficial effects on cardiovascular health, may also influence the risk of hip fracture although previous studies present discrepant results. We therefore aimed to determine whether the rate of hip fracture was associated with degree of adherence to a Mediterranean diet. We combined two Swedish cohort studies consisting of 37,903 men and 33,403 women (total n = 71,333, mean age 60 years) free of previous cardiovascular disease and cancer who answered a medical and a food‐frequency questionnaire in 1997. A modified Mediterranean diet score (mMED; range, 0 to 8 points) was created based on high consumption of fruits and vegetables, legumes and nuts, whole grains, fermented dairy products, fish, and olive/rapeseed oil, moderate intake of alcohol, and low intake of red and processed meat. Incident hip fractures between January 1, 1998, and December 31, 2012, were retrieved from the National Patient Register. Hazard ratios (HRs) and 95% confidence intervals (CIs) adjusted for potential confounders were calculated using Cox proportional hazards regression. Differences in age at hip fracture were calculated using multivariable Laplace regression. During follow‐up, 3175 hip fractures occurred at a median age of 73.3 years. One unit increase in the mMED was associated with 6% lower hip fracture rate (adjusted HR = 0.94; 95% CI, 0.92 to 0.96) and with a 3‐month higher median age at hip fracture (50th percentile difference = 2.8 months; 95% CI, 1.4 to 4.2). Comparing the highest quintile of adherence to the mMED (6 to 8 points) with the lowest (0 to 2 points) conferred an adjusted HR of hip fracture of 0.78 (95% CI, 0.69 to 0.89) and a 12‐month higher median age of hip fracture (50th percentile difference = 11.6 months; 95% CI, 4.2 to 19.0). Results were similar in men and women. We conclude that higher adherence to a Mediterranean‐like diet is associated with lower risk of future hip fracture. © 2016 American Society for Bone and Mineral Research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号