首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3444篇
  免费   332篇
  国内免费   234篇
耳鼻咽喉   17篇
妇产科学   6篇
基础医学   605篇
口腔科学   181篇
临床医学   344篇
内科学   251篇
皮肤病学   28篇
神经病学   67篇
特种医学   44篇
外科学   316篇
综合类   595篇
预防医学   54篇
眼科学   114篇
药学   1139篇
中国医学   224篇
肿瘤学   25篇
  2024年   11篇
  2023年   49篇
  2022年   115篇
  2021年   170篇
  2020年   104篇
  2019年   116篇
  2018年   123篇
  2017年   159篇
  2016年   155篇
  2015年   136篇
  2014年   255篇
  2013年   536篇
  2012年   205篇
  2011年   230篇
  2010年   197篇
  2009年   172篇
  2008年   162篇
  2007年   170篇
  2006年   157篇
  2005年   157篇
  2004年   121篇
  2003年   104篇
  2002年   100篇
  2001年   76篇
  2000年   40篇
  1999年   34篇
  1998年   25篇
  1997年   23篇
  1996年   18篇
  1995年   13篇
  1994年   13篇
  1993年   12篇
  1992年   5篇
  1991年   7篇
  1990年   2篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有4010条查询结果,搜索用时 15 毫秒
51.
52.
Objective: Chitosan-based nanoparticles (NPs) were prepared to promote intracellular sustained delivery of the synthetic delta opioid D-Ala(2)-D-Leu(5)-enkephalin (DADLE), prolonging peptide activity and inducing a safe and reversible hypometabolic state.

Materials and methods: NPs were prepared by combining ionotropic gelation and ultrasonication treatment. NP uptake studies and the effects of encapsulated DADLE on HeLa cells proliferation were tested by transmission electron microscopy (TEM) analysis, by immuno-fluorescence and immuno-cytochemistry.

Results: DADLE-loaded NPs are produced with suitable characteristics, a satisfactory process yield (55.4%?±?2.4%) and encapsulation efficiency (64.6%?±?2.1%). NPs are effective in inducing a hypometabolic stasis at a 10?4?M DADLE concentration. Moreover, as seen from the immunofluorescence study, the effect persists through the recovery period (72?h). Indeed, NPs labelled by anti-enkephalin antibody inside cell nucleus reassert that the in vivo release of the peptide can be prolonged with respect to the case of free peptide supply.

Conclusion: The nanoparticulate drug delivery system described seems to be effective in inducing and prolonging a sort of hibernation-like state in the cells.  相似文献   
53.
Hydrogels are hydrophilic polymeric networks, with chemical or physical crosslinks, that are capable of swell and can retain a large amount of water. Among the numerous types of macromolecules that can be used for hydrogel formation, polysaccharides show very attractive advantages in comparison to synthetic polymers. They are widely present in living organisms, are usually abundant and show a number of peculiar physicochemical properties; furthermore, these macromolecules are, in most cases, non-toxic, biocompatible and can be obtained from renewable sources. For these reasons, polysaccharides seem to be particularly suitable for different applications in the wide field of pharmaceutics. As examples of the studies that have been carried out on this topic, this review will focus on two polysaccharides, alginate and xyloglucan. Alginate has been, and still is, extensively investigated and has numerous industrial applications, whereas xyloglucan was chosen because, although it has been much less studied, it shows interesting properties that should find important practical uses in the near future. The possible advantages of physical gels over those that are chemically crosslinked are also discussed.  相似文献   
54.
Abstract

Design of artificial corneal scaffolds substitute is crucial for replacement of impaired cornea. In this paper, porous polyvinyl alcohol/silk fibroin/nano-hydroxyapatite (PVA/SF/n-HA) composite hydrogel was prepared via the genipin (GP) cross-linking, the pore diameter of the hydrogel ranged from 8.138?nm and 90.269?nm, and the physical and physiological function of hydrogel were investigated. The resulting hydrogel exhibited favourable physical properties. With the GP content increasing, the structural regularity of PVA/SF/n-HA composite hydrogel was enhanced and the thermal stability was improved. The moisture content was slightly decreased and generally maintained at approximately 70%. The tensile strength was heightened up to 0.64?MPa, while the breaking elongation was decreased slightly. Moreover, the biofunction was investigated. The in vitro degradation test demonstrated that with the addition of GP, the stability of the composite hydrogels in protease XIV solution was promoted and the three-dimensional porosity structure of composite hydrogels was maintained as ever. And the human corneal fibroblasts (HCFs) were employed to examine the cells cytotoxicity of the PVA/SF/n-HA composite hydrogels with different GP content by CCK-8 assay. Based on confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM), HCFs had individually commendable adhesion and proliferation on PVA/n-HA/SF composite hydrogel. HCFs proliferated and grew into the pores of composite hydrogel. The results of biocompatibility experiments of composite hydrogel suggested that it was no acute toxicity, in vitro cytotoxicity was 0 or 1 grade. Overall, results from this paper, PVA/n-HA/SF composite hydrogel was a qualified medical material which conformed to the national standard, could be a promising alternative for artificial cornea scaffold material—a novel approach to corneal tissue engineering.  相似文献   
55.
A selection of commercially available products containing stannous fluoride (SnF2)/sodium fluoride (NaF), SnF2/amorphous calcium phosphate (ACP), SnF2/NaF/ACP, tin (Sn)/fluorine (F)/chitosan were compared with phytosphingosine (PHS) with respect to their anti‐erosive properties in vitro. One‐hundred and twenty bovine enamel specimens were immersed in the respective product slurries for 2 min, twice daily. The formulations were diluted with either remineralization solution or artificial saliva. After each treatment, an erosive challenge was performed for 10 min, twice daily, using citric acid, pH 3.4. The specimens were stored in remineralization solution or artificial saliva until the next treatment‐erosion challenge. After 10 d, tissue loss was determined using profilometry. Enamel softening was determined through surface microhardness measurements. Tissue‐loss values (measured in μm and expressed as mean ± SD) for PHS, SnF2/NaF, SnF2/ACP, SnF2/ACP/NaF, and Sn/F/chitosan treatment groups and for the negative‐control group, were, respectively, 35.6 ± 2.8, 15.8 ± 1.8, 22.1 ± 2.0, 22.9 ± 1.8, 16.2 ± 1.2, and 51.2 ± 4.4 in the presence of remineralization solution and 31.7 ± 3.3, 15.6 ± 2.9, 16.5 ± 2.7, 16.8 ± 2.1, 13.1 ± 3.0, and 50.7 ± 2.8 in the presence of artificial saliva. There were no significant differences in surface microhardness measurements between the treatment groups. In conclusion, PHS resulted in a significant reduction of tissue loss compared with the negative control, but in comparison, the toothpastes containing Sn2+ and F? ions were significantly more effective compared with PHS.  相似文献   
56.
The aim of this study was the electrochemical detection of the adenosine-3-phosphate degradation product, xanthine, using a new xanthine biosensor based on a hybrid bio-nanocomposite platform which has been successfully employed in the evaluation of meat freshness. In the design of the amperometric xanthine biosensor, chitosan–polypyrrole–gold nanoparticles fabricated by an in situ chemical synthesis method on a glassy carbon electrode surface was used to enhance electron transfer and to provide good enzyme affinity. Electrochemical studies were carried out by the modified electrode with immobilized xanthine oxidase on it, after which the biosensor was tested to ascertain the optimization parameters. The Biosensor exhibited a very good linear range of 1–200 μM, low detection limit of 0.25 μM, average response time of 8 seconds, and was not prone to significant interference from uric acid, ascorbic acid, glucose, and sodium benzoate. The resulting bio-nanocomposite xanthine biosensor was tested with fish, beef, and chicken real-sample measurements.  相似文献   
57.
For medical workers, ultrasound phantoms for human soft tissue are used not only for accuracy management of ultrasound diagnosis but also to aid ultrasound‐guided needle and blind catheter insertion training without risk to real patients. For the phantoms, ultrasound characteristics and a texture are required to mimic the human soft tissue. The proposed phantom was composed of sodium alginate, calcium sulfate dihydrate, trisodium phosphate 12‐hydrate, glycerol, and water. The propagation speed, attenuation coefficient, acoustic impedance, and texture of the proposed phantom were almost the same as those of human soft tissue. Expensive chemicals and special equipment are not required.  相似文献   
58.
《Acta biomaterialia》2014,10(7):3188-3196
Hydrogels composed of assembled colloids is a material class that is currently receiving much interest and shows great promise for use in biomedical applications. This emerging material class presents unique properties derived from the combination of nanosized domains in the form of colloidal particles with a continuous gel network and an interspersed liquid phase. Here we developed an amphiphilic chitosan-based, thermogelling, shear-reversible colloidal gel system for improved glaucoma treatment and addressed how preparation procedures and loading with the anti-glaucoma drug latanoprost and commonly used preservative benzalkonium chloride influenced the mechanical properties of and drug release from the colloidal gels. The results highlight that incorporated substances and preparation procedures have effects both on mechanical properties and drug release, but that the release of drug loaded in the colloidal carriers is mainly limited by transport out of the carriers, rather than by diffusion within the gel. The developed colloidal chitosan based gels hold outstanding biomedical potential, as confirmed by the ease of preparation and administration, low cytotoxicity in MTT assay, excellent biocompatibility and lowering of intraocular pressure for 40 days in a rabbit glaucoma model. The findings clearly justify further investigations towards clinical use in the treatment of glaucoma. Furthermore, the use of this shear-reversible colloidal gel could easily be extended to localized treatment of a number of critical conditions, from chronic disorders to cancer, potentially resulting in a number of new therapeutics with improved clinical performance.  相似文献   
59.
In vitro and in vivo experimentation of various synthetic polymer hydrogels was conducted to establish some of the integral material properties that influence hemostasis. In vitro swelling experiments suggested that positive electrostatic charge was a key determinant of the ability of a polymer hydrogel to absorb physiological fluids, e.g. human plasma and blood. In vitro testing using unadulterated sheep blood suggested positive electrostatic charge and crosslink density were key determinants of the ability of a material to induce or enhance clot formation. Hydrogel formulations composed of higher amounts of positive electrostatic charge and lower crosslink density were able to effectively induce and enhance clot formation in the presence of a coagulation cascade activator. In vivo experimentation confirmed that hydrogels containing higher electrostatic charge and low crosslink density are more effective at fostering the formation of a robust hemostatic plug to control blood loss.  相似文献   
60.
Water sorption which is not classically Fickian has been observed in a variety of polymers. Deviation from Fickian kinetics is widely assumed to be caused by rate-limiting polymer relaxation, despite minimal proof of this. To the contrary, the evidence accumulated in this work indicates that water transport in initially glassy poly(2-hydroxyethyl methacrylate) (PHEMA), an important water-swellable biomedical polymer, is controlled by Fickian diffusion. First of all, the fractional water uptake is initially linear and independent of sample thickness when plotted against the square root of time over initial thickness, as expected for a Fickian process. Furthermore, the moving solvent front also advanced with the square root of time. Temperature, polymer thermal history and initial solvent concentration all affected the sorption kinetics of PHEMA in manners consistent with a Fickian process. The invariably Fickian sorption mechanism is believed to be the consequence of the water molecule's small size and affinity for hydrophilic, swellable polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号