首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   4篇
妇产科学   9篇
基础医学   6篇
口腔科学   3篇
临床医学   1篇
内科学   8篇
皮肤病学   1篇
神经病学   12篇
特种医学   3篇
外科学   3篇
综合类   7篇
预防医学   2篇
药学   65篇
中国医学   1篇
肿瘤学   10篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   12篇
  2010年   7篇
  2009年   5篇
  2008年   7篇
  2007年   9篇
  2006年   5篇
  2005年   8篇
  2004年   11篇
  2003年   7篇
  2002年   8篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1980年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
121.
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.  相似文献   
122.
Green tea catechins, especially (-)-epigallocatechin gallate (EGCG), are believed to mediate much of the cancer chemopreventive effects of tea. However, it was reported that green tea catechins enhanced colon carcinogenesis in rats. Experiments using 32P-labeled DNA fragments obtained from human cancer-related genes showed that catechins induced DNA damage in the presence of metals such as Cu(II) and Fe(III) complexes. In the presence of Fe(III)EDTA, the order of DNA damaging ability was EGCG approximately (-)-epigallocatechin>(-)-epicatechin gallate>catechin. Catechins plus Fe(III)EDTA caused DNA damage at every nucleotide, most likely due to *OH generation from H(2)O(2). In the presence of Cu(II), the order was (-)-epigallocatechin>catechin>EGCG>(-)-epicatechin gallate. Cu(II)-mediated DNA damage by EGCG occurred most frequently at T and G residues, especially of 5'-TG-3' and GG sequences. Catalase and bathocuproine inhibited the Cu(II)-mediated DNA damage, suggesting the involvement of H(2)O(2) and Cu(I). In the presence of metal ions, increased amounts of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were found in DNA treated with EGCG. Furthermore, EGCG increased amounts of 8-oxodG in HL-60 cells, but not in the H(2)O(2)-resistant clone HP100. When GSH was reduced by L-buthionine-[S, R]-sulfoximine, a low concentration of EGCG increased amounts of 8-oxodG in HL-60 cells, further supporting the involvement of H(2)O(2) in cellular DNA damage. It is concluded that EGCG can induce H(2)O(2) generation and subsequent damage to isolated and cellular DNA, and that oxidative DNA damage may mediate the potential carcinogenicity of EGCG.  相似文献   
123.
Casiopeínas are a series of mixed chelate copper complexes that are being evaluated as anticancer agents. Their effects in the cell include oxidative damage and mitochondrial dysfunction, yet the molecular mechanisms leading to such effects remain unclear. We tested whether [Cu(4,7-dimethyl-phenanthroline)(glycinate)]NO3 (Casiopeína IIgly or Cas IIgly) could alter cellular glutathione (GSH) levels by redox cycling with GSH to generate ROS and cellular oxidative stress. Cas IIgly induced a dramatic drop in intracellular levels of GSH in human lung cancer H157 and A549 cells, and is able to use GSH as source of electrons to catalyze the Fenton reaction. In both cell lines, the toxicity of Cas IIgly (2.5–5 μM) was potentiated by the GSH synthesis inhibitor l-buthionine sulfoximine (BSO) and diminished by the catalytic antioxidant manganese(III) meso-tetrakis(N,N′-diethylimidazolium-2-yl)porphyrin (MnTDE-1,3-IP5+), thus supporting an important role for oxidative stress. Cas IIgly also caused an over-production of reactive oxygen species (ROS) in the mitochondria and a depolarization of the mitochondrial membrane. Moreover, Cas IIgly produced mitochondrial DNA damage that resulted in an imbalance of the expression of the apoproteins of the mitochondrial respiratory chain, which also can contribute to increased ROS production. These results suggest that Cas IIgly initiates multiple possible sources of ROS over-production leading to mitochondrial dysfunction and cell death.  相似文献   
124.
Crotonaldehyde is a widespread environmental pollutant and lipid peroxidation product. Crotonaldehyde is a risk factor for many diseases (e.g., chronic pulmonary inflammation). However, its toxicity and its mechanism of action have not been thoroughly investigated. The purpose of this study is to investigate crotonaldehyde-induced oxidative stress and mechanism of cell death in BEAS-2B cells. Crotonaldehyde caused decreases of intracellular reduced glutathione levels and increases of reactive oxygen species in a dose-dependent manner. Crotonaldehyde induced cell death by apoptosis, and gradually transitioned to necrosis at high dose of crotonaldehyde, as demonstrated by Annexin V-FITC/PI staining and cell morphology analysis. Crotonaldehyde-induced ATP decline observed in the study might partially account for the switch from apoptosis to necrosis. Mitochondria membrane potential, cytochrome c release, caspase-9, and caspase-3/7 activity were investigated, and the results suggest that crotonaldehyde-induced apoptosis was activated in a caspase-dependent way. Collectively, these results demonstrate crotonaldehyde induces cell oxidative stress and caspase-dependent apoptosis.  相似文献   
125.
BACKGROUND: Glutathione (GSH) is one of the most highly concentrated intracellular antioxidants. Exogenous GSH has been shown to increase random-pattern skin flap survival. However, the effects of endogenous GSH depletion on random-pattern skin flap viability have never been studied. MATERIALS AND METHODS: To evaluate the effects of systemic glutathione depletion on random-pattern skin flap survival in rats, 28 Wistar albino rats were divided into control, sham, and BSO (buthionine sulfoximide, a selective inhibitor for gamma-glutamylcysteine synthetase) groups. Dorsal, cranial-based random-pattern skin-flaps were elevated and the percentage of flap necrosis was measured in all rats at the postoperative day 7. RESULTS: BSO-treated rats showed increased skin flap necrosis when compared with untreated animals (P < 0.001). High-dose BSO treatment group had more clinically evident necrosis than low dose group (P < 0.05). CONCLUSIONS: This study reveals the importance of endogenous GSH for random skin-flap viability.  相似文献   
126.
"Ecstasy" (3,4-methylenedioxymethamphetamine, MDMA), is a derivative of amphetamine with hepatotoxic effects that has been shown to induce apoptosis of cultured liver cells. In the present work, we studied the role played by oxidative stress in the apoptotic response caused by MDMA on a cell line of hepatic stellate cells (HSC). MDMA-treatment provoked oxidative stress determined as reactive oxygen species (ROS) accumulation and decrease of intracellular reduced glutathione levels. Pre-treatment with the antioxidant pyrrolidine dithiocarbamate blocked ROS production but did not prevent MDMA-induced apoptosis of HSC. The pro-oxidant menadione induced in HSC ROS production and apoptosis that were prevented by pyrrolidine dithiocarbamate, showing HSC to be susceptible to oxidative stress-induced apoptosis. Addition of exogenous GSH or its precursor NAC potentiated the apoptotic action of MDMA but blocked apoptosis induced by menadione. Pre-treatment of HSC with the cytochrome P450 inhibitor quinine diminished the extent of apoptosis caused by MDMA, suggesting the involvement of a metabolic derivative of MDMA on its apoptotic effect. Nuclear factor NF-kappaB was activated by MDMA in a oxidative stress independent fashion and played a protective role in the apoptotic response, since inhibition of NF-kappaB by treatment with parthenolide or by viral infection with a dominant-negative form of NIK (Ad5dnNIK) resulted in an increase of MDMA-induced cell death. In summary, MDMA-induced apoptosis of HSC is accompanied, but not caused by oxidative stress; a metabolic derivative of the drug is responsible for the apoptotic effect of MDMA, which is partially blocked by NF-kappaB activation.  相似文献   
127.
In Plasmodium falciparum-infected cells or in P. berghei infected mice, increase of reduced glutathione (GSH) levels confers resistance to chloroquine (CQ). GSH is synthesized within the cells through a complex biochemical pathway composed of several well known enzymes, in which glucose-6-phosphate dehydrogenase (G6PD) plays an important role. The physiological hormone dehydroepiandrosterone sulfate (DHEAS) is a potent inhibitor of G6PD activity, and G6PD deficiency is known to exert antimalaria protection. This study aimed to investigate the ability of DHEAS to enhance the antimalarial activity of CQ, via an inhibition of G6PD activity and GSH synthesis. Two P. berghei CQ resistant strains (CQR6 and CQR30) were selected in vivo from the sensitive strain NK65. Drug effects were checked both by monitoring the evolution of parasitaemia and by the survival of infected mice. In addition, intra-parasite levels of GSH and G6PD activity were measured before and after the treatment. Results demonstrate that acquisition of CQ resistance in P. berghei is associated with a significant increase in parasite G6PD activity and GSH level. Combination of CQ with DHEAS or buthionin sulfoximin (BSO, a specific inhibitor of GSH synthesis) significantly increased sensitivity of resistant parasites to CQ and increased the survival period of the infected mice. This reduction of parasitaemia and improvement of the survival of infected mice were associated with intra-parasite depletion of GSH and inhibition of G6PD activity due to DHEAS action. This experimental study suggests that DHEAS could be used to potentiate antimalarial action of CQ, particularly on CQ resistant strains.  相似文献   
128.
用体外实验方法,以人红白血病K562,人胃癌细胞株SGC-7901为靶细胞,研究丁胱亚磺酰亚胺(BSO)对人体肿瘤细胞的直接杀伤及BSO与顺氯氨铂(DDP)或5-氟尿嘧啶(5Fu)联合应用的增敏作用。结果表明BSO单用或与DDP、5Fu联合应用对K562和SGC-7901均有明显的杀伤作用。  相似文献   
129.

Background

In response to pressure overload, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. This pathological hypertrophy is mediated, among others, by the phosphatase calcineurin and is characterized by metabolic changes that impair energy production by mitochondria.

Objectives

The authors aimed to determine the role of the calcineurin splicing variant CnAβ1 in the context of cardiac hypertrophy and its mechanism of action.

Methods

Transgenic mice overexpressing CnAβ1 specifically in cardiomyocytes and mice lacking the unique C-terminal domain in CnAβ1 (CnAβ1Δi12 mice) were used. Pressure overload hypertrophy was induced by transaortic constriction. Cardiac function was measured by echocardiography. Mice were characterized using various molecular analyses.

Results

In contrast to other calcineurin isoforms, the authors show here that cardiac-specific overexpression of CnAβ1 in transgenic mice reduces cardiac hypertrophy and improves cardiac function. This effect is mediated by activation of serine and one-carbon metabolism, and the production of antioxidant mediators that prevent mitochondrial protein oxidation and preserve ATP production. The induction of enzymes involved in this metabolic pathway by CnAβ1 is dependent on mTOR activity. Inhibition of serine and one-carbon metabolism blocks the beneficial effects of CnAβ1. CnAβ1Δi12 mice show increased cardiac hypertrophy and declined contractility.

Conclusions

The metabolic reprogramming induced by CnAβ1 redefines the role of calcineurin in the heart and shows for the first time that activation of the serine and one-carbon pathway has beneficial effects on cardiac hypertrophy and function, paving the way for new therapeutic approaches.  相似文献   
130.
Efficient ex vivo/in vivo selection of genetically modified hematopoietic stem/progenitor cells (HPCs) and T lymphocytes could greatly improve several gene therapy strategies. We have previously reported that primary murine HPCs, transduced with a bicistronic retroviral vector, co-expressing the catalytic subunit of gamma-glutamylcysteine synthetase (gamma-GCSh) and eGFP, could be selected by l-buthionine-S,R-sulfoximine (BSO). Upon ex vivo transduction with a low, defined gene dosage and BSO selection, HPCs were able to repopulate the bone marrow of syngeneic myeloablated hosts, showing multi-lineage expression [Hum Gene Ther, 16 (2005), 711]. We now provide 'proof-of-principle' that the same strategy can be applied to the gene therapy of graft-vs.-host disease (GVHD) subsequent to allogeneic bone marrow transplantation (ABMT), and of chromosome X-associated chronic granulomatous disease (CGD). Transfer of the herpes simplex virus-thymidine kinase (HSV-Tk) 'suicide' gene into donor T lymphocytes is a potential method to control GVHD after ABMT. However, an efficient selection system is required to eliminate non-HSV-Tk-expressing T lymphocytes before administration to the patient. We now report that, upon transduction with a retroviral vector, co-expressing gamma-GCSh and eGFP, and subsequent selection by BSO, over 95% human T lymphocytes were found to express eGFP; moreover, upon transduction with a novel retroviral vector co-expressing gamma-GCSh and HSV-Tk, and subsequent BSO treatment, over 95% of T lymphocytes could be eliminated by ganciclovir. The efficacy of the gamma-GCSh-BSO selection strategy was then tested on an in vitro model of CGD. Upon transduction of gp91 (phox)-deficient PLBKO cells with a novel bicistronic retroviral vector co-expressing human gp91 (phox) and gamma-GCSh, exposure to BSO for 48 h eliminated most non-transduced cells, resulting in selection of gp91 (phox)-expressing cells, and reconstitution of NADPH oxidase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号