首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6744篇
  免费   421篇
  国内免费   179篇
耳鼻咽喉   52篇
儿科学   23篇
妇产科学   13篇
基础医学   1120篇
口腔科学   19篇
临床医学   199篇
内科学   643篇
皮肤病学   2篇
神经病学   4270篇
特种医学   27篇
外科学   139篇
综合类   184篇
预防医学   38篇
眼科学   102篇
药学   382篇
  1篇
中国医学   69篇
肿瘤学   61篇
  2024年   18篇
  2023年   58篇
  2022年   159篇
  2021年   270篇
  2020年   177篇
  2019年   125篇
  2018年   133篇
  2017年   153篇
  2016年   164篇
  2015年   208篇
  2014年   272篇
  2013年   337篇
  2012年   286篇
  2011年   348篇
  2010年   322篇
  2009年   358篇
  2008年   425篇
  2007年   312篇
  2006年   306篇
  2005年   272篇
  2004年   278篇
  2003年   206篇
  2002年   180篇
  2001年   150篇
  2000年   102篇
  1999年   116篇
  1998年   137篇
  1997年   150篇
  1996年   135篇
  1995年   85篇
  1994年   79篇
  1993年   80篇
  1992年   70篇
  1991年   79篇
  1990年   69篇
  1989年   53篇
  1988年   47篇
  1987年   45篇
  1986年   71篇
  1985年   115篇
  1984年   86篇
  1983年   63篇
  1982年   73篇
  1981年   72篇
  1980年   58篇
  1979年   19篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1972年   2篇
排序方式: 共有7344条查询结果,搜索用时 15 毫秒
991.
Granule cells of the hippocampal dentate gyrus receive two powerful excitatory inputs: the perforant path, originating from the entorhinal cortex, and the associational pathway, originating from mossy cells, the principal neurons of the dentate gyrus hilus. We examined the electrophysiological properties of the less well-studied associational pathway and its interaction with the perforant path in the intact mouse hippocampus and then tested homosynaptic, trans-synaptic and associative long-term potentiation of these pathways. The associational pathway was either monosynaptically activated by stimulation within the inner molecular layer or trisynaptically activated after stimulation of the perforant path. Laminar profiles of extracellularly recorded associational pathway field potentials demonstrated a bell-shaped curve with a peak in the inner molecular layer. Tetanization of the perforant path induced not only homosynaptic potentiation of the perforant path (162.4 +/- 6.7% at 0.5-1.5 h after tetanus) but also heterosynaptic potentiation of the associational pathway (115.7 +/- 4.9%). Direct tetanization of the associational pathway within the inner molecular layer was ineffective in either the septo-temporal (97.2 +/- 4.5%) or temporal-septal (104.4 +/- 4.6%) direction. In contrast, conjoint tetanization of the associational pathway with the perforant path potentiated the associational pathway responses in both the septo-temporal (123.4 +/- 5.8%) and the temporal-septal (124.8 +/- 7.3%) directions. Paired-pulse facilitation was attenuated by long-term potentiation in the perforant path and the associational pathway, suggesting pre-synaptic involvement. These results demonstrate that long-term potentiation of the associational pathway and the perforant path is a product of the network properties of the dentate gyrus rather than of each monosynaptic input alone. The architecture of this neural network may be designed for flexible dynamic associations of the afferent perforant path inputs to configure encoded information within hippocampal neuronal ensembles.  相似文献   
992.
Experience-dependent modifications of hippocampal place cell firing.   总被引:4,自引:0,他引:4  
Understanding the empirical rules that regulate alterations of hippocampal firing fields will enhance our understanding of hippocampal function. The current study sought to extend previous research in this area by examining the effect of substituting a new stimulus for a familiar stimulus in a familiar environment. Hippocampal place cells were recorded while rats chased food pellets scattered onto the floor of a cylindrical apparatus with a white cue card affixed to the apparatus wall. Once a place cell had been recorded in the presence of the white card, the white card was replaced by a black card of the same size and shape. The place cell was then recorded in the presence of the black card. Thirty-six cells were recorded using this procedure. All cells had stable firing fields in the presence of the white card. Both the white and black cards had stimulus control over place cell firing; generally, rotation of either card caused an equal rotation of the firing fields present. When the black card was substituted for the white card, place cells showed time-variant changes in their spatial firing patterns. The change was such that the spatial firing patterns of the majority of place cells were similar in the presence of the white and black cards during initial black card exposures. During subsequent presentations of the black card, the spatial firing patterns associated with the 2 cards became distinct from each other. Once the differentiation of firing patterns had occurred in a given rat, all place cells subsequently recorded from that rat had different firing patterns in the presence of the white and black cards. The findings are discussed relative to sensory-, motor-, attentional-, and learning-related interpretations of hippocampal function. It is argued that the time-variant alteration of place cell firing fields observed following exposure to a novel stimulus in this study reflects an experience-dependent modification of place cell firing patterns.  相似文献   
993.
994.
BACKGROUND: Methylphenidate has been suggested to exert its therapeutic effect mainly by blocking the dopamine transporter. In spite of the importance of this interaction, no detailed information is available yet on its actions on single dopaminergic neurons. METHODS: We examined the effects of methylphenidate on dopaminergic neurons using electrophysiological recordings from rat midbrain slices. RESULTS: Methylphenidate inhibited spontaneous firing and caused a membrane hyperpolarization in current clamp or an outward current in voltage clamp. These effects were antagonized by the D(2) receptor antagonist sulpiride. An acute dopamine-depleting treatment of the slices with the dopa-decarboxylase inhibitor carbidopa significantly reduced the effects of methylphenidate. This drug potentiated, in a concentration-dependent manner, cellular responses to exogenous dopamine application. CONCLUSIONS: Our electrophysiological data are consistent with the hypothesis that methylphenidate inhibits dopamine transporter and suggest that the depression of firing is mediated by the release of newly synthesized dopamine which accumulates extracellularly due to inhibition of its reuptake.  相似文献   
995.
Eigenmannia is a weakly electric fish that emits a constant-frequency electric organ discharge (EOD). Probability coder (P unit) and phase coder (T unit) electroreceptive afferents differentially encode changes in EOD amplitude and phase, respectively. physiologically identified T and P units were intracellularly labelled with HRP and their terminals were examined with electron microscopy to determine their postsynaptic targets. This technique reveals that phase and amplitude are relayed to first-order electrosensory neurons by two parallel but not independent pathways. P-type afferents terminate on granular interneurons, basilar pyramidals, and polymorphic cells, electrosensory lateral line lobe targets that monitor amplitude modulations, but P-type afferents do not contact spherical cells. T-type afferents relay phase information to spherical cells and thus form a separate afferent pathway. T unit terminals do not synapse directly on basilar pyramidal cells. Collateral branches from T-type afferents, however, were also found to terminate on granule and polymorphic cells, thereby adding phase information into the amplitude channel. P- and T-type afferents exhibit cellular specificity by forming synaptic junctions with different subsets of post synaptic targets in the deep neuropil. The afferent terminals make either asymmetric chemical or gap junction synapses depending on the identity of the post synaptic target. T units contacting granule cells or polymorphic cells had not been previously described. Two possible roles of adding phase to amplitude information are discussed in terms of electrolocation.  相似文献   
996.
The plasma membranes of several mammalian tissues including the brain are known to have specific binding sites for glucocorticoids. The developmental changes in specific glucocorticoid binding to synaptic plasma membrane (SPM) from rat brain were determined at various postnatal ages, using [3H]triamcinolone acetonide (TA) as the steroid ligand. The specific binding of the labeled glucocorticoid to SPM during the first 2 postnatal weeks was only 40% of the adult level. An increase of the specific binding occurred after day 15 and this developmental rise of binding reached the adult level approximately by the end of the fourth week. Methodologically, these developmental data are detailed in the present article to include nonspecific binding as well as specific binding. Scatchard analysis indicates that the developmental rise of the specific glucocorticoid binding was due to an increase in the membrane binding sites. The ontogenetic increase of membrane binding sites during postnatal brain development provides additional evidence that these binding sites have physiological significance in brain function.  相似文献   
997.
Fetal neocortical transplants placed into adult neocortical sensorimotor aspiration lesions are known to receive afferent input from the adult host rat brain. As this input is less dense than normal, the present study was designed to investigate whether neutralization of myelin-associated neurite growth inhibitors NI-35/250 might promote host derived cholinergic innervation of fetal neocortical transplants. Adult rats received unilateral sensorimotor cortical aspiration lesions, and block grafts from embryonic day 14–15 neocortical tissue were placed immediately into the lesion cavities. Mouse hybridoma cells secreting either the monoclonal antibody IN-1, which blocks neurite growth inhibitors NI-35/250, or a control antibody or medium without cells were applied in millipore filter capsules directly over the fetal graft tissue. The brains were processed 12 weeks later for the visualization of acetylcholinesterase-positive, presumptive cholinergic fibers. We found an enhancement in the cholinergic innervation of fetal grafts in the recipients treated with the antibody IN-1 both in terms of fibers growing into the graft and of density within the center of the grafts. These results indicate that myelin-associated neurite growth inhibitors are involved in the development of host–transplant connectivity in the adult brain.  相似文献   
998.
Since the relative contribution of pre- versus post-synaptic actions of 5-hydroxytryptamine (5-HT) to modulation of somatosensory processing in the dorsal horn is not known, recordings fro m primary afferents and dorsal horn neurons from in vitro rat spinal cord were used to address this issue. 5-HT produced a depression of spontaneous dorsal root potentials and a slow primary afferent depolarization (PAD): the PAD versus 5-HT concentration-response curve was bell shaped (maximum at 5 μM; 250±C 41.5 μV). In 28/40 dorsal horn neurons, 5-HT elicited a slow depolarization not clearly associated with a specific input resistance change. Excitatory synaptic transmission from primary afferents to dorsal horn neurons was depressed by 5-HT in 40/45 neurons. 5-HT ≥ 5 μM significantly ( P ≤ 0.05) decreased the amplitude, shortened the total duration and half-decay time of the excitatory post-synaptic potential (EPSP). A dominant effect of 5-HT on longer latency EPSP components was evident. There was no direct relationship between the magnitude of PAD and the reduction of the EPSP by 5-HT. 5-Carboxamidotryptamine, an agonist for 5-HT1 receptors, mimicked the depression of neurotransmission in the dorsal horn without producing PAD. A sample of dorsal horn neurons ( n = 8) was injected with biocytin and their morphology described. All had somata within laminae III-VI. In five of these neurons 5-HT depressed the EPSP but in one interneuron-like and one unclassed neuron the EPSP was potentiated. These data suggest that whilst depression of synaptic transmission is the predominant effect of 5-HT in the deep dorsal horn, this is not easily related to PAD or cellular actions of 5-HT on dorsal horn neurons.  相似文献   
999.
Glutamic acid decarboxylase (GAD) catalyzes the biosynthesis of the inhibitory neurotransmitter γ-aminobutyric acid (GABA). GAD has been suggested as an autoantigen in insulin-dependent diabetes mellitus and stiff-man syndrome. Recently, three forms of membrane-associated GAD (MGAD) have been characterized in porcine brain, but the subcellular localization and function of these proteins are unknown. We present evidence that GAD activity is associated with synaptic vesicles from porcine brain. These vesicles contain a 60 kDa protein recognized by serum from patients with insulin-dependent diabetes mellitus, probably MGADII, as shown by subcellular fractionation and immunoblotting. These results raise the possibility that the association of MGADII with synaptic vesicles may be crucial for its role as an autoantigen in insulin-dependent diabetes mellitus. © 1995 Wiley-Liss, Inc.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号