首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1581篇
  免费   112篇
  国内免费   59篇
耳鼻咽喉   4篇
妇产科学   2篇
基础医学   161篇
口腔科学   32篇
临床医学   113篇
内科学   183篇
皮肤病学   10篇
神经病学   15篇
特种医学   51篇
外科学   36篇
综合类   159篇
现状与发展   1篇
预防医学   62篇
眼科学   16篇
药学   730篇
中国医学   79篇
肿瘤学   98篇
  2024年   3篇
  2023年   34篇
  2022年   105篇
  2021年   96篇
  2020年   51篇
  2019年   81篇
  2018年   96篇
  2017年   71篇
  2016年   90篇
  2015年   89篇
  2014年   133篇
  2013年   258篇
  2012年   91篇
  2011年   95篇
  2010年   81篇
  2009年   81篇
  2008年   60篇
  2007年   62篇
  2006年   41篇
  2005年   35篇
  2004年   27篇
  2003年   25篇
  2002年   11篇
  2001年   5篇
  2000年   3篇
  1999年   10篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1990年   1篇
排序方式: 共有1752条查询结果,搜索用时 15 毫秒
41.
Feng Dong 《Nanotoxicology》2019,13(3):339-353
Silver nanoparticles (AgNP) undergo various transformations into different Ag species in the environment, which determines their toxicity in microorganisms. In aerobic condition, AgNPs release Ag+ that causes cell inactivation. Limited information is known about the AgNP-cell interaction in oxygen-free environment. Here we compared the transformation and antibacterial effects of AgNPs in aerobic and anaerobic environment. The bacterium Pseudomonas aeruginosa was relatively not susceptible to Ag+ or AgNP in anaerobic environment, indicated by near two orders of magnitude greater of anaerobic minimum inhibitory concentration (MIC) than the aerobic counterpart. In anaerobic environment, the dissolved Ag concentration decreased due to the reduction of Ag+. Electron microscopy images showed the formation of new AgNPs and aggregates, preferably on cell surface or associated with extracellular polymer substances (EPS) matrix. Accumulating AgNPs onto the cells could cause membrane damage, cytoplasm release or bacterial death. Meanwhile, EPS and cell lysate were very likely to bind AgNPs, facilitating the extensively assembling of AgNPs into large aggregates. This reduced the effective Ag exposure to cells and might contribute to the detoxification in anaerobic environment. Further, flow cytometry analysis quantified that bacterial membrane was largely intact under the treatment of AgNPs in anaerobic condition compared to the dose–response manner in aerobic condition.  相似文献   
42.
The replacement of oxide semiconducting TiO2 nano particles with one dimensional TiO2 nanotubes (TNTs) has been used for improving the electron transport in the dye-sensitized solar cells (DSSCs). Although use of one dimensional structure provides the enhanced photoelectrical performance, it tends to reduce the adsorption of dye on the TiO2 surface due to decrease of surface area. To overcome this problem, we investigate the effects of TiCl4 treatment on DSSCs which were constructed with composite films made of TiO2 nanoparticles and TNTs. To find optimum condition of TNTs concentration in TiO2 composites film, series of DSSCs with different TNTs concentration were made. In this optimum condition (DSSCs with 10 wt% of TNT), the effects of post treatment are compared for different TiCl4 concentrations. The results show that the DSSCs using a TiCl4 (90 mM) post treatment shows a maximum conversion efficiency of 7.83% due to effective electron transport and enhanced adsorption of dye on TiO2 surface.  相似文献   
43.
Liquid crystalline networks (LCNs) are a class of polymers, which are able to produce mechanical actuation in response to external stimuli. Recent creation of LCNs with exchangeable links (xLCNs) makes LCNs easy moldable. As the xLCNs need to be shaped at a high temperature, it is important to enhance their thermal and mechanical properties. In this paper, a series of xLCNs/SiO2 composites containing 1%–7% SiO2 nanoparitcles (SNP) were prepared and their thermal and mechanical properties were examined. The results show that xLCNs/SNP composites have lower liquid crystalline-isotropic phase transition temperature and higher decomposition temperature than pure LCN. The tensile strength and the elongation at break of xLCNs at high temperatures were also enhanced due to the addition of SNPs.  相似文献   
44.
One of the promises of nanoparticle (NP) carriers is the reformulation of promising therapeutics that have failed clinical development due to pharmacologic challenges. However, current nanomedicine research has been focused on the delivery of established and novel therapeutics. Here we demonstrate proof of the principle of using NPs to revive the clinical potential of abandoned compounds using wortmannin (Wtmn) as a model drug. Wtmn is a potent inhibitor of phosphatidylinositol 3' kinase-related kinases but failed clinical translation due to drug-delivery challenges. We engineered a NP formulation of Wtmn and demonstrated that NP Wtmn has higher solubility and lower toxicity compared with Wtmn. To establish the clinical translation potential of NP Wtmn, we evaluated the therapeutic as a radiosensitizer in vitro and in vivo. NP Wtmn was found to be a potent radiosensitizer and was significantly more effective than the commonly used radiosensitizer cisplatin in vitro in three cancer cell lines. The mechanism of action of NP Wtmn radiosensitization was found to be through the inhibition of DNA-dependent protein kinase phosphorylation. Finally, NP Wtmn was shown to be an effective radiosensitizer in vivo using two murine xenograft models of cancer. Our results demonstrate that NP drug-delivery systems can promote the readoption of abandoned drugs such as Wtmn by overcoming drug-delivery challenges.  相似文献   
45.
46.
47.
Oxaceprol is well-defined therapeutic agent as an atypical inhibitor of inflammation in osteoarthritis. In the present study, we aimed to develop and characterize oxaceprol-loaded poly-lactide-co-glycolide (PLGA) nanoparticles for intra-articular administration in osteoarthritis. PLGA nanoparticles were prepared by double-emulsion solvent evaporation method. Meanwhile, a straightforward and generally applicable high performance liquid chromatography method was developed, and validated for the first time for the quantification of oxaceprol. To examine the drug carrying capacity of nanoparticles, varying amount of oxaceprol was entrapped into a constant amount of polymer matrix. Moreover, the efficacy of drug amount on nanoparticle characteristics such as particle size, zeta potential, morphology, drug entrapment, and in vitro drug release was investigated. Nanoparticle sizes were between 229 and 509 nm for different amount of oxaceprol with spherical smooth morphology. Encapsulation efficiency ranged between 39.73 and 63.83% by decreasing oxaceprol amount. The results of Fourier transform infrared and DSC showed absence of interaction between oxaceprol and PLGA. The in vitro drug release from these nanoparticles showed a sustained release of oxaceprol over 30 days. According to cell culture studies, oxaceprol-loaded nanoparticles had no cytotoxicity with high biocompatibility. This study was the first step of developing an intra-articular system in the treatment of osteoarthritis for the controlled release of oxaceprol. Our findings showed that these nanoparticles can be beneficial for an effective treatment of osteoarthritis avoiding side effects associated with oral administration.  相似文献   
48.
The aim of this study was to develop a novel nanosize drug candidate for cancer therapy. For this purpose, (S)-methyl 2-[(7-hydroxy-2-oxo-4-phenyl-2H-chromen-8-yl)methyleneamino]-3-(1H-indol-3-yl)propanoate (ND3) was synthesized by the condensation reaction of 8-formyl-7-hydroxy-4-phenylcoumarin with l -tryptophan methyl ester. Its controlled release formulation was prepared and characterized by different spectroscopic and imaging methods. The cytotoxic effects of ND3 and its controlled release formulation were evaluated against MCF-7 and A549 cancer cell lines, and it was found that both of them have a toxic effect on cancer cells. For drug design and process development, the molecular docking analysis technique helps to clarify the effects of some DNA-targeted anticancer drugs to determine the interaction mechanisms of these drugs on DNA in a shorter time and at a lower cost. By using the molecular docking analysis and DNA binding assays, the interaction between the synthesized compound and DNA was elucidated and non-binding interactions were also determined. To predict the pharmacokinetics, and thereby accelerate drug discovery, the absorption, distribution, metabolism, excretion and toxicity values of the synthesized compound were determined by in silico methods.  相似文献   
49.
目的 构建一种具核磁共振成像(magnetic resonance imaging,MRI)功能的再生含钆介孔硅纳米粒(gadolinium-containing renewable mesoporous silica nanoparticles,rMSN-Gd),探究其作为抗肿瘤药物载体的可行性。方法 以稻壳为硅源,通过软模板法制备rMSN Gd纳米粒。对新型纳米粒形态、粒度、介孔状态、元素含量、生物相容性、载药量、体外释放度等方面进行表征,并检测其在体外与荷瘤BALB/c裸鼠体内MRI成像特点。以抗肿瘤药物盐酸阿霉素为模型药物,以人肝癌HepG2细胞与人肺癌A549细胞为模型,对纳米载体的细胞摄取、体外抗肿瘤活性进行评价。结果rMSN-Gd纳米粒呈球形,分散性良好,平均粒径为150 nm,钆含量为4.7%wt,材料具有良好生物相容性。rMSN-Gd体外与体内均有较好MRI成像能力。载药后,其释药速率呈pH依赖性。纳米粒的细胞摄取效率较高,其对HepG2与A549细胞毒性显著高于游离阿霉素。结论 多功能纳米材料rMSN-Gd可以成功作为药物递送系统并整合MRI成像功能实现诊断治疗一体化。  相似文献   
50.
Introduction: Nanomedicine has emerged as a major field of academic research with direct impact on human health. While a first generation of products has been successfully commercialized and has significantly contributed to enhance patient’s life, recent advances in material design and the emergence of new therapeutics are contributing to the development of more sophisticated systems. As the field matures, it is important to comprehend the challenges related to nanoparticle commercial development for a more efficient and predictable path to the clinic.

Areas covered: The review provides an overview of nanoparticle-based delivery systems currently on the market and in clinical trials, and discuss the principal challenges for their commercial development, both from a manufacturing and regulatory perspective, to help gain understanding of the translational path for these systems.

Expert opinion: Clinical translation of nanoparticle-based delivery systems remains challenging on account of their 3D nanostructure and requires robust nano-manufacturing process along with adequate analytical tools and methodologies. By identifying early enough in the development the product critical attributes and understanding their impact on the therapeutic performance, the developers of nanopharmaceuticals will be better equipped to develop efficient product pipelines. Second-generation products are expected to broaden nanopharmaceutical global market in the upcoming years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号