首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   24篇
  国内免费   2篇
耳鼻咽喉   2篇
基础医学   70篇
口腔科学   1篇
临床医学   11篇
内科学   16篇
皮肤病学   3篇
神经病学   158篇
特种医学   5篇
外科学   4篇
综合类   5篇
预防医学   8篇
眼科学   6篇
药学   112篇
中国医学   1篇
肿瘤学   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   6篇
  2018年   5篇
  2017年   6篇
  2016年   12篇
  2015年   8篇
  2014年   16篇
  2013年   22篇
  2012年   32篇
  2011年   33篇
  2010年   27篇
  2009年   29篇
  2008年   42篇
  2007年   25篇
  2006年   26篇
  2005年   18篇
  2004年   17篇
  2003年   16篇
  2002年   14篇
  2001年   10篇
  2000年   6篇
  1999年   9篇
  1998年   5篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
排序方式: 共有403条查询结果,搜索用时 15 毫秒
51.
Introduction: The CDC currently estimates the prevalence of autism spectrum disorders (ASD) at 1 in 88 children. Though the exact etiology of ASD is unknown, recent studies implicate synaptic maturation and plasticity in the pathogenesis of ASD leading to an imbalance of excitation and inhibition, and specifically a disproportionately high level of excitation. Pharmacological agents that modulate excitation and inhibition are currently in clinical trials for treatment of ASD and show promising preliminary results.

Areas covered: This paper reviews the literature implicating the role of glutamate and GABA pathways in the pathophysiology of ASD. It also provides a review of the current results from both animal models and human clinical trials of drugs aimed at normalizing the imbalance of excitation and inhibition through the use of metabotropic glutamate receptor (mGluR) antagonists and GABA agonists.

Expert opinion: Both mGluR antagonists and GABA agonists have promising preliminary data from animal model and small-scale Phase II human trials. They show significant efficacy in subpopulations and appear to have favorable side-effect profiles. Though preliminary data are extremely promising, results from ongoing larger, double-blind, placebo-controlled studies will give a more complete understanding of the efficacy and side-effect profile related to these drugs.  相似文献   
52.
Alterations in dendritic spine densities and morphologies have been correlated with the abnormal functioning of the synapse. Specifically the metabotropic glutamate receptor 5 (mGluR5) has been implicated in dendrogenesis and spineogenesis, since its activation triggers various signaling cascades that have been demonstrated to play roles in synaptic maturation and plasticity. Here we used the Golgi impregnation technique to analyze the dendritic spines of mGluR5(-/-) knockout mice in comparison to their heterozygote mGluR5(+/-) littermates. mGluR5(-/-) mice had elevated spine densities irrespective of spine type or location along their dendritic trees in comparison to mGluR5(+/-) animals. Such anatomical changes may underlie the hyperexcitability observed in mGluR5 total knockout mice.  相似文献   
53.
Measles virus (MV) infection may lead to severe chronic CNS disease processes, including MV-induced encephalitis. Because the intracellular Ca2+ concentration ([Ca2+]i) is a major determinant of the (patho-)physiological state in all cells we asked whether important Ca2+ conducting pathways are affected by MV infection in cultured cortical rat neurons. Patch-clamp measurements revealed a decrease in voltage-gated Ca2+ currents during MV-infection, while voltage-gated K+ currents and NMDA-evoked currents were unaffected. Calcium-imaging experiments using 50 mM extracellular KCl showed reduced [Ca2+]i increases in MV-infected neurons, confirming a decreased activity of voltage-gated Ca2+ channels. In contrast, the group-I metabotropic glutamate receptor (mGluR) agonist DHPG evoked changes in [Ca2+]i that were increased in MV-infected cells. Our results show that MV infection conversely regulates Ca2+ signals induced by group-I mGluRs and by voltage-gated Ca2+ channels, suggesting that these physiological impairments may contribute to an altered function of cortical neurons during MV-induced encephalitis.  相似文献   
54.
55.
Background:  Emerging evidence indicates that Group I metabotropic glutamate receptors (mGluR1 and mGluR5) differentially regulates ethanol self-administration in several rodent behavioral models. The purpose of this work was to further characterize involvement of Group I mGluRs in the reinforcing effects of ethanol using a progressive ratio schedule of reinforcement.
Methods:  Alcohol-preferring (P) rats were trained to self-administer ethanol (15% v/v) versus water on a concurrent schedule of reinforcement, and the effects of the Group I mGluR antagonists were evaluated on progressive ratio performance. The rats were then trained to self-administer sucrose (0.4% w/v) versus water, and the effects of the antagonists were tested on progressive ratio performance.
Results:  The mGluR1 antagonist, 3,4-dihydro-2H-pyrano[2,3]b quinolin-7-yl ( cis -4-methoxycyclohexyl) methanone (JNJ 16259685; 0 to 1 mg/kg) and the mGluR5 antagonist, 6-methyl-2-(phenylethynyl) pyridine (MPEP; 0 to 10 mg/kg) dose-dependently reduced ethanol break point. In separate locomotor activity assessments, the lowest effective dose of JNJ 16259685 (0.3 mg/kg) produced a motor impairment, whereas the lowest effective dose of MPEP (3 mg/kg) did not. Thus, the reduction in ethanol break point by mGluR1 antagonism was probably a result of a motor impairment. JNJ 16259685 (0.3 mg/kg) and MPEP (10 mg/kg) reduced sucrose break point and produced motor impairments. Thus, the reductions in sucrose break point produced by both Group I antagonists were probably because of nonspecific effects on motor activity.
Conclusions:  Together, these results suggest that glutamate activity at mGluR5 regulates motivation to self-administer ethanol.  相似文献   
56.
Although the glutamatergic system usually functions in the CNS, expression has been observed in non-neuronal tissues and a subset of cancers. Metabotropic glutamate receptors (mGlus) are highly "druggable" GPCRs and thus a priority for validation as therapeutic targets. We have previously reported that the aberrant expression of mGlu1 is sufficient to induce spontaneous melanoma development in vivo. We isolated and characterized several stable mGlu1-mouse melanocytic clones and demonstrated that these clones are transformed and tumorigenic. We hypothesize that expression of mGlus may not be uncommon in the pathogenesis of tumors other than melanoma, and that activity of an otherwise normal glutamate receptor in an ectopic cellular environment involves signaling pathways which dysregulate cell growth, ultimately leading to tumorigenesis. As most human cancers are of epithelial origin (carcinomas), in this review, the possibility that mGlu1 could function as a complete oncogene and transform epithelial cells is also discussed.  相似文献   
57.
Recent studies suggest that subtype specific activators of metabotropic glutamate receptors (mGluRs) have exciting potential for the development of novel treatment strategies for numerous psychiatric and neurological disorders. A number of positive allosteric modulators (PAMs) have been identified that are highly selective for mGluR1, including the compounds Ro 01-6128, Ro 67-4853, and Ro 67-7476. These PAMs have been previously found to interact with a site distinct from that of negative allosteric modulators (NAMs), typified by R214127. These mGluR1 PAMs do not have an effect on baseline calcium levels but induce leftward shifts in the concentration-response of mGluR1 to agonists. However, their effects on a variety of signaling pathways and their mechanism of action have not been fully explored and are of critical importance for further development of mGluR1 allosteric modulators as novel drugs. In baby hamster kidney (BHK) cells, mGluR1 activates calcium mobilization, cAMP production, and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation; signaling cascades which are distinct and differentially regulated. In contrast to their effects on calcium mobilization, these compounds were found to activate ERK1/2 phosphorylation in the absence of exogenously added agonist, an effect that was fully blocked by both orthosteric (LY341495) and allosteric (R214127) mGluR1 antagonists. The mGluR1 PAMs were also found to activate cAMP production in the absence of agonist. Thus, these mGluR1 PAMs have qualitatively different effects on a variety of mGluR1-mediated signal transduction cascades. Together, these data provide further evidence that allosteric compounds can differentially modulate the coupling of a single receptor to independent signaling pathways or act in a system-dependent manner.  相似文献   
58.
Glutamatergic substrates of drug addiction and alcoholism   总被引:3,自引:0,他引:3  
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.  相似文献   
59.
Homers regulate drug-induced neuroplasticity: implications for addiction   总被引:2,自引:0,他引:2  
Drug addiction is a chronic, relapsing disorder, characterized by an uncontrollable motivation to seek and use drugs. Converging clinical and preclinical observations implicate pathologies within the corticolimbic glutamate system in the genetic predisposition to, and the development of, an addicted phenotype. Such observations pose cellular factors regulating glutamate transmission as likely molecular candidates in the etiology of addiction. Members of the Homer family of proteins regulate signal transduction through, and the trafficking of, glutamate receptors, as well as maintain and regulate extracellular glutamate levels in corticolimbic brain regions. This review summarizes the existing data implicating the Homer family of protein in acute behavioral and neurochemical sensitivity to drugs of abuse, the development of drug-induced neuroplasticity, as well as other behavioral and cognitive pathologies associated with an addicted state.  相似文献   
60.
Rationale Group II metabotropic glutamate receptors (mGluRs) comprise the mGluR2 and mGluR3 subtypes, the activation and modulation of which has been suggested to be beneficial for treating schizophrenia. Genetic association studies suggest limited association between mGluR2 and schizophrenia but some association between mGluR3 and schizophrenia. Conversely, pre-clinical studies suggest that mGluR2 may be responsible for mediating the antipsychotic activity of mGluR2/3 agonists, although to date, the role of mGluR3 has not been specifically assessed. Objectives The aim of this study is to use recently generated mGluR3 and mGluR2 knockout mice to investigate which of the group II mGluRs mediates the actions of the mGluR2/3 agonist, LY379268, in two mouse models predictive of antipsychotic activity. Materials and methods LY379268 (0.3–10 mg/kg SC), phencyclidine (PCP; 1–5 mg/kg IP), and amphetamine 1–10 mg/kg IP) were assessed on locomotor activity and behaviour in C57Bl/6J and transgenic mice. LY379268 was then assessed on PCP (5 mg/kg IP)- and amphetamine (2.5 mg/kg IP)-induced hyperactivity and behaviour in C57Bl/6J and transgenic mice. Results PCP (5 mg/kg)-evoked hyperactivity and behavioural alterations, i.e. circling, falling, stereotypy and ataxia, as well as amphetamine (2.5 mg/kg)-evoked hyperactivity, were dose-dependently attenuated by LY379268 (0.3–3 mg/kg) in C57Bl/6J mice. One milligram per kilogram of LY379268 reversed PCP-evoked hyperactivity and behavioural alterations in wild-type (WT) and mGluR3 knockout mice but not in mice lacking mGluR2. Similarly, 3 mg/kg LY379268 reversed amphetamine-evoked hyperactivity in WT and mGluR3 knockout mice but not in mice lacking mGluR2. Conclusion The mGlu2 but not the mGlu3 receptor subtype mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号