首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   5篇
  国内免费   3篇
耳鼻咽喉   2篇
儿科学   1篇
基础医学   38篇
临床医学   4篇
内科学   10篇
神经病学   181篇
综合类   7篇
眼科学   1篇
药学   32篇
中国医学   1篇
肿瘤学   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   9篇
  2011年   11篇
  2010年   15篇
  2009年   15篇
  2008年   10篇
  2007年   13篇
  2006年   14篇
  2005年   9篇
  2004年   12篇
  2003年   9篇
  2002年   11篇
  2001年   12篇
  2000年   12篇
  1999年   12篇
  1998年   14篇
  1997年   8篇
  1996年   16篇
  1995年   11篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1989年   4篇
  1986年   3篇
  1985年   9篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
21.
22.
Bu J  Akhtar N  Nishiyama A 《Glia》2001,34(4):296-310
Cells that express the NG2 proteoglycan (NG2+ cells) constitute a large glial population in the normal mature rodent brain. They can differentiate into oligodendrocytes but are distinct from mature oligodendrocytes, astrocytes, microglia, and neurons. Changes in NG2+ cells were examined in kainic acid-induced excitotoxic lesions of the hippocampus, and the relationship between NG2+ cells and reactive astrocytes and microglia was investigated between 1 and 90 days after lesioning. Two types of reactive NG2+ cells with altered morphology and increased NG2 immunoreactivity were observed in the lesion. Early changes, consisting of an increase in NG2 immunoreactivity and the number of processes, were apparent 24 h after lesioning and persisted through 3 months. These cells were distinct from reactive astrocytes or activated microglia/macrophages. A second type of reactive NG2+ cells appeared 2 weeks after injection, following an influx of macrophages. They had large, round cell bodies with short processes and expressed the microglia/macrophage antigens OX42 and ED1. Single cells coexpressing NG2 and macrophage/microglial antigens could be isolated from the lesion. The number of NG2+/OX42+ cells gradually declined and disappeared by 3 months after injection. They did not express glial fibrillary acidic protein or the alpha receptor for platelet-derived growth factor, indicating that they are distinct from astrocytes or oligodendrocyte progenitor cells. Cells that coexpressed NG2 and OX42 were never observed in hippocampal slice cultures treated with kainic acid, suggesting that NG2+/OX42+ cells are not derived from endogenous resident brain cells. These findings demonstrate that NG2 expression is transiently upregulated on activated macrophages/microglia that appear during the chronic stage in an excitotoxic lesion in the adult CNS.  相似文献   
23.
Senescence maker protein 30 (SMP30) is decreased in an androgen‐independent manner in kidney and liver with age. However, regulation of SMP30 expression in the brain has not been examined in aging and neurodegenerative diseases. To investigate SMP30 expression in the brain, we utilized aging and kainate (KA)‐induced neurodegenerative disease models. Interestingly, expression of SMP30 was unlikely to decrease in the aged brain, but total levels of SMP30 protein were increased at 4 weeks after KA injury. Increased glial fibrillary acidic protein (GFAP) with elevated SMP30 expression was observed at the same time post‐KA, indicating that regulation of SMP30 expression in the brain may be associated with astrocytosis. We confirmed that KA induced GFAP expression with increased SMP30 in rat astrocyte cells. Moreover, we found that ERK1/2 activation was involved in the up‐regulation of SMP30 in astrocytes. Our results suggest that elevated SMP30 in activated astrocytes plays an important supportive role after brain damage. © 2009 Wiley‐Liss, Inc.  相似文献   
24.
In our previous studies, Tat-GluR6-9c (a glutamate receptor 6 C-terminus peptide fused the TAT protein transduction sequence) not only inhibited the activation of MLK3 (mixed lineage kinase 3) and JNK (c-Jun N-terminal kinase) via the GluR6·PSD-95 (postsynaptic density protein 95)·MLK3 signaling module but also diminished neuronal death induced by kainic acid or transient cerebral ischemia in rat hippocampus. Here, we investigate whether overexpression of the PDZ1 domain of PSD-95 protein could suppress the binding of GluR6 with PSD-95 and the activation of MLK3, MKK7 (mitogen-activated kinase kinase 7) and JNK1/2, and rescused neuronal cell death induced by kainic acid. Our results showed that overexpression of the PDZ1 domain of PSD-95 protein could prevent nuclear accumulation and abrogate neuronal cell death in SD (Sprague–Dawley) rat hippocampal neuronal cells. Further studies indicated that overexpression of PDZ1 could inhibit the enhancement of binding of GluR6 to PSD-95 and prevent the activation of MLK3, MKK7 and JNK1/2 induced by kainic acid. Taken together, the essential role of the PDZ1 domain of PSD-95 in apoptotic cell death in neurons provides an experimental foundation for gene therapy of neurodegenerative diseases with overexpression of the PDZ1 domain.  相似文献   
25.
An acute brain insult such as traumatic head/brain injury, stroke, or an episode of status epilepticus can trigger epileptogenesis, which, after a latent, seizure-free period, leads to epilepsy. The discovery of effective pharmacological interventions that can prevent the development of epilepsy requires knowledge of the alterations that occur during epileptogenesis in brain regions that play a central role in the induction and expression of epilepsy. In the present study, we investigated pathological alterations in GABAergic interneurons in the rat basolateral amygdala (BLA), and the functional impact of these alterations on inhibitory synaptic transmission, on days 7 to 10 after status epilepticus induced by kainic acid. Using design-based stereology combined with glutamic acid decarboxylase (GAD) 67 immunohistochemistry, we found a more extensive loss of GABAergic interneurons compared to the loss of principal cells. Fluoro-Jade C staining showed that neuronal degeneration was still ongoing. These alterations were accompanied by an increase in the levels of GAD and the α1 subunit of the GABAA receptor, and a reduction in the GluK1 (previously known as GluR5) subunit, as determined by Western blots. Whole-cell recordings from BLA pyramidal neurons showed a significant reduction in the frequency and amplitude of action potential–dependent spontaneous inhibitory postsynaptic currents (IPSCs), a reduced frequency but not amplitude of miniature IPSCs, and impairment in the modulation of IPSCs via GluK1-containing kainate receptors (GluK1Rs). Thus, in the BLA, GABAergic interneurons are more vulnerable to seizure-induced damage than principal cells. Surviving interneurons increase their expression of GAD and the α1 GABAA receptor subunit, but this does not compensate for the interneuronal loss; the result is a dramatic reduction of tonic inhibition in the BLA circuitry. As activation of GluK1Rs by ambient levels of glutamate facilitates GABA release, the reduced level and function of these receptors may contribute to the reduction of tonic inhibitory activity. These alterations at a relatively early stage of epileptogenesis may facilitate the progress towards the development of epilepsy.  相似文献   
26.
Trimetazidine (1[2,3,4-trimethoxy-benzyl] piperazine, 2 HCl) is an anti-ischemic agent frequently administered as a prophylactic treatment for episodes of angina pectoris and chorioretinal disturbances. It is also employed as a symptomatic treatment of vertigo but its mechanism of action is yet to be defined. Using Fura-2 fluorescence photometry and whole-cell patch-clamp recordings we investigated the effect of trimetazidine on the [Ca(2+)](i) and current responses induced by the application of non-N-methyl-D-aspartate (NMDA) receptor agonists on low density vestibular ganglion neuronal cultures explanted from 3 day s postnatal rats. Trimetazidine blocked the [Ca(2+)](i) and current responses induced by 100 microM applications of both kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA). These responses were dependent on external Ca(2+) and were blocked by the voltage-dependent Ca(2+) channel blockers Ni(2+) and Cd(2+) . Trimetazidine only acts on the AMPA/kainate receptors and had no effect on K(+)-induced depolarizations. Dose-dependent curves were obtained for the inhibition by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and trimetazidine (IC(50) 7 microM and 0.7 microM) of kainate stimulations. After AMPA stimulation, dose-response inhibition curves showed an IC(50) of 3 microM for CNQX and 25 microM for trimetazidine. These results indicate that trimetazidine could be a potent antagonist of AMPA/kainate receptors in vestibular ganglion neurons. This may explain the protective role of trimetazidine in the inner ear suggesting an anti-excitotoxic activity.  相似文献   
27.
In the present study, using Golgi and electron microscopy techniques, experimentally induced epilepsy (kindling and kainate treatment) elicited collateral sprouting of mossy fibers in rat hippocampus. Collateral branches invade the hilus, cross the granule cell layer, and distribute throughout the inner third of the molecular layer. These newly developed collaterals may acquire the typical features of mossy fibers including giant fiber varicosities (mousses), although the mean surface of these mousses was thinner in these collaterals than in terminal branches. Granule cell dendrites may develop giant thorny excrescences, suggesting that the targets of these collaterals are granule cells. Giant synaptic boutons appear in the inner third of molecular layer of epileptic rats. These boutons acquire the morphological features of mossy fiber boutons and made multiple synaptic contacts with dendritic spines. The analysis of the profile types suggests that some of the newly developed collateral mossy fibers made hypotrophic synaptic contacts.  相似文献   
28.
The present study provides a survey of the immunolocalization of ionotropic glutamate receptor subunits throughout the rat and cat cerebellar cortex, with emphasis on the unipolar brush cell (UBC), a hitherto neglected cerebellar cell that is densely concentrated in the granular layer of the vestibulocerebellum and that forms giant synapses with mossy fibers. An array of nine previously characterized antibodies has been used, each of which stained a characteristic profile of cerebellar cells. The UBCs of both rat and cat were strongly immunostained by an antibody against the α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA) receptor subunits, GluR2 and GluR3; were moderately immunostained by a monoclonal antibody to kainate receptor subunits, GluR5/6/7; were weakly immunostained by antibodies to NR1 subunits; and were not stained by antibodies to GluR1, GluR4, GluR6/7, KA-2, and NR2A/B. Postsynaptic densities of the giant mossy fiber-UBC synapses were GluR2/3, GluR5/6/7, and NR1 immunoreactive. The other cerebellar neurons were all immunolabeled to some extent with the GluR2/3 and NR1 antibodies. In addition, Purkinje cells were immunopositive for GluRl and GluR5/6/7; granule cells were immunopositive for GluR5/6/7, GluR6/7, KA-2, and NR2A/B. The Golgi-Bergmann glia was densely stained by GluRl and GluR4 antibodies, whereas astrocytes of the granular layer were stained by the GluR4 antiserum. Data provided herein may guide further electrophysiological and pharmacological studies of cerebellar cells in general and the UBCs in particular. © 1995 Wiley-Liss, Inc.  相似文献   
29.
Summary We have examined the effects of salmon calcitonin (SCT), injected into the cerebral ventricle (i.c.v.), on the tail-biting and scratching behavior induced by the intrathecal injection of different types of nociceptive agents, i.e., substance P, N-methyl-D-aspartate (NMDA), kainate (KA), and quisqualate (Quis). Tail-biting and scratching behavior induced by the 4 substances was significantly inhibited by SCT (i.c.v.) in the same manner: the dose-response curves were U-shaped, and the most effective dose was O.lIU/mouse in all cases. SCT did not, however, completely inhibit tail-biting and scratching behavior. At its most effective dose, the percent inhibition of substance P-, NMDA-, KA- and Quis-induced behavior were 77.9%, 40.2%, 49.4%, and 52.9%, respectively. These results suggest that SCT has the inhibitory effects of substance P- and glutamate receptor agonists-induced nociceptive response in vivo.  相似文献   
30.
This study aimed at analyzing the involvement of (RS)--amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate (AMPA/kainate) receptors in the survival of cultured rat embryonic brainstem cells, dissociated on embryonic day 14. The cell number was estimated after pharmacological manipulation of the receptors by exposure to agonists or antagonists. The developmental stage at the moment of drug application was critical for cell survival. We observed after 8 days in vitro a much stronger decrease in the number of gamma-enolase-positive cells when the cultures were treated for 3 days with the antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) starting on the day of plating than when DNQX was added after 5 days in vitro. Conversely, exposure to the agonists (RS)-2-amino-3-(3-hydroxy-5-tri-fluoromethyl-4-isoxazolyl)-propionic acid (T-AMPA) or kainate for 3 days significantly reduced cell survival only when the treatment was initiated after 5 days in vitro. Survival of S-100-positive cells was not affected after exposure to either agonists or antagonists. Neither agonist nor antagonist treatment modified cell proliferation, as assessed by 5-bromo-2′-deoxyuridine (BrdU) staining, suggesting that the decrease in the number of gamma-enolase-positive cells is essentially due to cell death. If some of the processes we observed in vitro correspond to analogous events in vivo, then exposure to excitatory amino acid receptor agonists or antagonists at critical stages of embryogenesis may alter the development of the central nervous system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号