首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4686篇
  免费   345篇
  国内免费   110篇
耳鼻咽喉   44篇
儿科学   25篇
妇产科学   15篇
基础医学   815篇
口腔科学   54篇
临床医学   311篇
内科学   1421篇
皮肤病学   23篇
神经病学   380篇
特种医学   265篇
外科学   389篇
综合类   276篇
预防医学   283篇
眼科学   70篇
药学   563篇
  1篇
中国医学   140篇
肿瘤学   66篇
  2024年   15篇
  2023年   114篇
  2022年   266篇
  2021年   369篇
  2020年   208篇
  2019年   161篇
  2018年   137篇
  2017年   155篇
  2016年   136篇
  2015年   226篇
  2014年   298篇
  2013年   350篇
  2012年   275篇
  2011年   255篇
  2010年   245篇
  2009年   242篇
  2008年   243篇
  2007年   161篇
  2006年   142篇
  2005年   142篇
  2004年   113篇
  2003年   95篇
  2002年   86篇
  2001年   92篇
  2000年   64篇
  1999年   57篇
  1998年   48篇
  1997年   59篇
  1996年   34篇
  1995年   45篇
  1994年   45篇
  1993年   35篇
  1992年   39篇
  1991年   23篇
  1990年   24篇
  1989年   11篇
  1988年   19篇
  1987年   15篇
  1986年   15篇
  1985年   14篇
  1984年   11篇
  1983年   5篇
  1982年   9篇
  1981年   10篇
  1980年   5篇
  1979年   8篇
  1978年   2篇
  1977年   3篇
  1976年   12篇
  1971年   1篇
排序方式: 共有5141条查询结果,搜索用时 15 毫秒
121.
Polycyclic aromatic hydrocarbons (PAHs) are regarded as key molecules in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest prototype—naphthalene (C10H8)—has remained an open question. Here, we show in a combined crossed beam and theoretical study that naphthalene can be formed in the gas phase via a barrierless and exoergic reaction between the phenyl radical (C6H5) and vinylacetylene (CH2 = CH-C ≡ CH) involving a van-der-Waals complex and submerged barrier in the entrance channel. Our finding challenges conventional wisdom that PAH-formation only occurs at high temperatures such as in combustion systems and implies that low temperature chemistry can initiate the synthesis of the very first PAH in the interstellar medium. In cold molecular clouds, barrierless phenyl-type radical reactions could propagate the vinylacetylene-mediated formation of PAHs leading to more complex structures like phenanthrene and anthracene at temperatures down to 10 K.  相似文献   
122.
New important applications of copper metal, e.g., in the areas of hydrogen production, fuel cell operation, and spent nuclear fuel disposal, require accurate knowledge of the physical and chemical properties of stable and metastable copper compounds. Among the copper(I) compounds with oxygen and hydrogen, cuprous oxide Cu(2)O is the only one stable and the best studied. Other such compounds are less known (CuH) or totally unknown (CuOH) due to their instability relative to the oxide. Here we combine quantum-mechanical calculations with experimental studies to search for possible compounds of monovalent copper. Cuprous hydride (CuH) and cuprous hydroxide (CuOH) are proved to exist in solid form. We establish the chemical and physical properties of these compounds, thereby filling the existing gaps in our understanding of hydrogen- and oxygen-related phenomena in Cu metal.  相似文献   
123.
Slow relaxation occurs in many physical and biological systems. "Creep" is an example from everyday life. When stretching a rubber band, for example, the recovery to its equilibrium length is not, as one might think, exponential: The relaxation is slow, in many cases logarithmic, and can still be observed after many hours. The form of the relaxation also depends on the duration of the stretching, the "waiting time." This ubiquitous phenomenon is called aging, and is abundant both in natural and technological applications. Here, we suggest a general mechanism for slow relaxations and aging, which predicts logarithmic relaxations, and a particular aging dependence on the waiting time. We demonstrate the generality of the approach by comparing our predictions to experimental data on a diverse range of physical phenomena, from conductance in granular metals to disordered insulators and dirty semiconductors, to the low temperature dielectric properties of glasses.  相似文献   
124.
Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA.  相似文献   
125.
The complexity of human interactions with social and natural phenomena is mirrored in the way we describe our experiences through natural language. In order to retain and convey such a high dimensional information, the statistical properties of our linguistic output has to be highly correlated in time. An example are the robust observations, still largely not understood, of correlations on arbitrary long scales in literary texts. In this paper we explain how long-range correlations flow from highly structured linguistic levels down to the building blocks of a text (words, letters, etc..). By combining calculations and data analysis we show that correlations take form of a bursty sequence of events once we approach the semantically relevant topics of the text. The mechanisms we identify are fairly general and can be equally applied to other hierarchical settings.  相似文献   
126.
It is well-known that the distribution of immunity in a population dictates the future incidence of infectious disease, but this process is generally understood at individual or macroscales. For example, herd immunity to multiple pathogens has been observed at national and city levels. However, the effects of population immunity have not previously been shown at scales smaller than the city (e.g., neighborhoods). In particular, no study has shown long-term effects of population immunity at scales consistent with the spatial scale of person-to-person transmission. Here, we use the location of dengue patients' homes in Bangkok with the serotype of the infecting pathogen to investigate the spatiotemporal distribution of disease risk at small spatial scales over a 5-y period. We find evidence for localized transmission at distances of under 1 km. We also observe patterns of spatiotemporal dependence consistent with the expected impacts of homotypic immunity, heterotypic immunity, and immune enhancement of disease at these distances. Our observations indicate that immunological memory of dengue serotypes occurs at the neighborhood level in this large urban setting. These methods have broad applications to studying the spatiotemporal structure of disease risk where pathogen serotype or genetic information is known.  相似文献   
127.
It is not fully understood why we cooperate with strangers on a daily basis. In an increasingly global world, where interaction networks and relationships between individuals are becoming more complex, different hypotheses have been put forward to explain the foundations of human cooperation on a large scale and to account for the true motivations that are behind this phenomenon. In this context, population structure has been suggested to foster cooperation in social dilemmas, but theoretical studies of this mechanism have yielded contradictory results so far; additionally, the issue lacks a proper experimental test in large systems. We have performed the largest experiments to date with humans playing a spatial Prisoner's Dilemma on a lattice and a scale-free network (1,229 subjects). We observed that the level of cooperation reached in both networks is the same, comparable with the level of cooperation of smaller networks or unstructured populations. We have also found that subjects respond to the cooperation that they observe in a reciprocal manner, being more likely to cooperate if, in the previous round, many of their neighbors and themselves did so, which implies that humans do not consider neighbors' payoffs when making their decisions in this dilemma but only their actions. Our results, which are in agreement with recent theoretical predictions based on this behavioral rule, suggest that population structure has little relevance as a cooperation promoter or inhibitor among humans.  相似文献   
128.
129.
Most cellular processes rely on large multiprotein complexes that must assemble into a well-defined quaternary structure in order to function. A number of prominent examples, including the 20S core particle of the proteasome and the AAA+ family of ATPases, contain ring-like structures. Developing an understanding of the complex assembly pathways employed by ring-like structures requires a characterization of the problems these pathways have had to overcome as they evolved. In this work, we use computational models to uncover one such problem: a deadlocked plateau in the assembly dynamics. When the molecular interactions between subunits are too strong, this plateau leads to significant delays in assembly and a reduction in steady-state yield. Conversely, if the interactions are too weak, assembly delays are caused by the instability of crucial intermediates. Intermediate affinities thus maximize the efficiency of assembly for homomeric ring-like structures. In the case of heteromeric rings, we find that rings including at least one weak interaction can assemble efficiently and robustly. Estimation of affinities from solved structures of ring-like complexes indicates that heteromeric rings tend to contain a weak interaction, confirming our prediction. In addition to providing an evolutionary rationale for structural features of rings, our work forms the basis for understanding the complex assembly pathways of stacked rings like the proteasome and suggests principles that would aid in the design of synthetic ring-like structures that self-assemble efficiently.  相似文献   
130.
The regulation of cell shape is a common challenge faced by organisms across all biological kingdoms. In nearly all bacteria, cell shape is determined by the architecture of the peptidoglycan cell wall, a macromolecule consisting of glycan strands crosslinked by peptides. In addition to shape, cell growth must also maintain the wall structural integrity to prevent lysis due to large turgor pressures. Robustness can be accomplished by establishing a globally ordered cell-wall network, although how a bacterium generates and maintains peptidoglycan order on the micron scale using nanometer-sized proteins remains a mystery. Here, we demonstrate that left-handed chirality of the MreB cytoskeleton in the rod-shaped bacterium Escherichia coli gives rise to a global, right-handed chiral ordering of the cell wall. Local, MreB-guided insertion of material into the peptidoglycan network naturally orders the glycan strands and causes cells to twist left-handedly during elongational growth. Through comparison with the right-handed twisting of Bacillus subtilis cells, our work supports a common mechanism linking helical insertion and chiral cell-wall ordering in rod-shaped bacteria. These physical principles of cell growth link the molecular structure of the bacterial cytoskeleton, mechanisms of wall synthesis, and the coordination of cell-wall architecture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号