首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   34篇
  国内免费   34篇
耳鼻咽喉   2篇
基础医学   74篇
口腔科学   1篇
临床医学   13篇
内科学   9篇
皮肤病学   1篇
神经病学   334篇
特种医学   8篇
外科学   5篇
综合类   28篇
预防医学   4篇
眼科学   2篇
药学   23篇
中国医学   5篇
肿瘤学   4篇
  2023年   5篇
  2022年   7篇
  2021年   10篇
  2020年   10篇
  2019年   11篇
  2018年   7篇
  2017年   13篇
  2016年   10篇
  2015年   12篇
  2014年   16篇
  2013年   24篇
  2012年   13篇
  2011年   13篇
  2010年   26篇
  2009年   25篇
  2008年   14篇
  2007年   14篇
  2006年   23篇
  2005年   12篇
  2004年   23篇
  2003年   15篇
  2002年   20篇
  2001年   14篇
  2000年   7篇
  1999年   14篇
  1998年   14篇
  1997年   15篇
  1996年   26篇
  1995年   15篇
  1994年   9篇
  1993年   7篇
  1992年   12篇
  1991年   9篇
  1990年   3篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   10篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
排序方式: 共有513条查询结果,搜索用时 15 毫秒
21.
目的:本研究旨在阐明肾细胞癌下调蛋白1(DRR1)在小鼠大脑组织中的表达谱及相关生物学功能.方法:首先,通过real time RT-PCR的方法明确在不同发育阶段的小鼠大脑组织中DRR1的表达水平;利用免疫荧光染色法检测DRR1在原代培养的神经干细胞以及神经元中的表达情况.其次,采用real time RT-PCR的...  相似文献   
22.
Anatomical studies of the crab stomatogastric ganglion (STG) have suggested only minimal organization within the neuropil of this structure. Here, we present evidence that, for at least one intrinsic neuron type, the ventricular dilator (VD) neuron, a highly organized and stereotyped branching structure exists within the stomatogastric neuropil. Specifically, we show the morphology of the VD neuron consists of a single primary neurite that projects from the soma into the neuropil and bifurcates into a pair of subprimary neurites, which in turn exit the neuropilar region, one entering the left and the other the right medial ventricular nerve. Nearly all secondary neurite branching of the VD neuron is from the subprimary neurites. There are approximately 22 secondary branches/neuron (range 14-28), with no significant difference between the number of secondary branches off the right vs. the left subprimary neurite, although the ratio of secondary branches between subprimaries varies (range 0.4-1.6). The fine neurites that branch from the secondary processes segregate hemispherically within the neuropil, based on the subprimary neurite of origin. Within this hemispherical organization, another level of fine neurite segregation is present, namely, the fine neurites derived from each secondary branch are restricted to discrete regions of the hemisphere with only minimal overlap with those derived from other secondary branches. Monte Carlo simulations show that this segregation differs significantly from a random distribution. The organization of branching seen in the VD neuron may play a critical role in the electrotonic and local computational organization of this neuron and sets the stage for physiological experimentation addressing these issues.  相似文献   
23.
The rat pheochromocytoma PC12 cells differentiate into neuronal-like cells in response to treatment with neurotrophins. The cells have been extensively used for investigating neuronal differentiation and axonal growth. Here we report the isolation of a variant PC12 cell line, named PC12-N1, which spontaneously differentiates and extends neuritic processes. The PC12-N1 cells expressed many neuronal specific proteins, including the synaptosomal associated protein of 25 kDa (SNAP-25), synaptotagmin, and synaptobrevin (also known as VAMP). The cells also expressed neurofilament protein of 68 kDa, a marker for differentiated neurons. In addition to the spontaneous neurite outgrowth, the PC12-N1 cells showed a marked increase in neurite outgrowth upon treatment with nerve growth factor (NGF), basic fibroblast growth factor (bFGF), and cyclic AMP (cAMP). The activation of mitogen-activated protein (MAP) kinases was examined by immunoblot analysis using phospho-specific antibodies. No overactivation was observed with ERK1/2 or p38. However, the c-Jun N-terminal kinase JNK/SAPK was activated approximately 10-fold over the parental PC12 cells. These results suggest that activation of JNK/SAPK may be involved in the spontaneous neurite extension in the PC12-N1 cells. Moreover, the PC12-N1 cells may be used as a model for investigating molecular signaling mechanisms underlying neuronal differentiation and axonal outgrowth.  相似文献   
24.
Several groups have reported that acetylcholinesterase (AChE), through a mechanism not involving its catalytic activity, may have a role in fiber elongation. These observations were performed on experimental systems in which acetylcholine synthesis was active. Because neurite outgrowth can be modulated by neurotransmitters, we used the N18TG2 neuroblastoma line, which is defective for neurotransmitter production, to evaluate whether AChE may modulate neurite sprouting in nonenzymatic ways. To avoid the possibility that differences between transfected and mock-transfected clones may be due to the selection procedure, N18TG2 cells were previously subcloned, and the FB5 subclone was used for transfections. We performed transfections of FB5 cells with three distinct constructs encoding for the glycosylphosphoinositol-anchored AChE form, the tetrameric AChE form, and a soluble monomeric AChE form truncated in its C-terminus. A morphometric analysis of retinoic acid-differentiated clones was also undertaken. The results revealed that higher AChE expression following transfection brings about a greater ability of the clones to grow fibers with respect to nontransfected or mock-transfected cells irrespective of the used construct. Having observed no differences between the morphology of the transfected clones, we tested the possibility that the culture substrate can affect the capability of the clones to extend fibers. Also in this case we revealed no differences between the clones cultured on uncoated or collagen-pretreated dishes. These data indicate that alternative AChE molecular forms that differ in their C-teminal region exhibit similar ability to induce fiber outgrowth and suggest that the protein region responsible for this role is located in the invariant portion of the AChE molecule.  相似文献   
25.
26.
低剂量铅对原代培养的海马神经元的影响   总被引:12,自引:2,他引:10  
目的 研究低剂量铅对原代培养的海马神经元生长及存活的影响。方法 建立新生大鼠海马神经元原代无血清培养技术,通过不同浓度PbCl2染毒后,于不同时间点观察神经细胞的生长和存活情况。结果 极低浓度的铅(10^-7mol/L)即可引起神经元出芽延迟,突起长度缩短,细胞存活率下降,随剂量增加和时间延长,毒效应越严重。结论 低剂量铅具有抑制神经元生长和存活的毒性。  相似文献   
27.
A new method for culturing spinal cord slices or explants is presented which entails the use of a commercially available purified collagen, Vitrogen. Vitrogen provides a stable three-dimensional matrix for culturing spinal cord explants which is superior to the conventional method of applying explants to moist dishes coated with rat tail collagen. The use of Vitrogen facilitated the culturing of spinal cord explants which remain viable for over 2 1/2 weeks in culture, in addition to enhancing neuritic growth.  相似文献   
28.
In the present study the effects of lens injury on retinal ganglion cell axon/neurite re-growth were investigated in adult mice. In vivo, lens injury promoted successful regeneration of retinal ganglion cell axons past the optic nerve lesion site, concomitant with the invasion of macrophages into the eye and the presence of activated retinal astrocytes/Muller cells. In vitro, retinal ganglion cells from lens-lesioned mice grew significantly longer neurites than those from intact mice, which correlated with the presence of enhanced numbers of activated retinal astrocytes/Muller cells. Co-culture of retinal ganglion cells from intact mice with macrophage-rich lesioned lens/vitreous body led to increased neurite lengths compared with co-culture with macrophage-free intact lens/vitreous body, pointing to a neurotrophic effect of macrophages. Furthermore, retinal ganglion cells from mice that had no lens injury but had received intravitreal Zymosan injections to stimulate macrophage invasion into the eye grew significantly longer neurites compared with controls, as did retinal ganglion cells from intact mice co-cultured with macrophage-rich vitreous body from Zymosan-treated mice. The intact lens, but not the intact vitreous body, exerted a neurotrophic effect on retinal ganglion cell neurite outgrowth, suggesting that lens-derived neurotrophic factor(s) conspire with those derived from macrophages in lens injury-stimulated axon regeneration. Together, these results show that lens injury promotes retinal ganglion cell axon regeneration/neurite outgrowth in adult mice, an observation with important implications for axon regeneration studies in transgenic mouse models.  相似文献   
29.
We investigated whether endothelin-2/vasoactive intestinal contractor (ET-2/VIC) gene expression, upregulated by hypoxia in cancer cells, was associated with differentiation in neuronal cells. RT-PCR analysis, morphological observations, and immunostaining revealed that CoCl2, a hypoxic mimetic agent, at 200 microM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced neurite outgrowth in PC-12 rat pheochromocytoma cells. These effects induced by 200 microM CoCl2 were completely inhibited by the antioxidant N-acetyl cysteine at 20 mM. In addition, CoCl2 increased the level of intracellular reactive oxygen species (ROS) at an early stage. Furthermore, interleukin (IL)-6 gene expression was upregulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by ROS may be associated with neuronal differentiation through the regulation of IL-6. When the cells were treated with 500 microM CoCl2 for 24 hr, however, ET-2/VIC gene expression disappeared, IL-6 gene expression was downregulated, and necrosis was subsequently induced in the PC-12 cells.  相似文献   
30.
The central nervous system (CNS) fails to regenerate after injury. A glial scar forms at the injury site, contributing to regenerative failure partly resulting from the chondroitin sulfate proteoglycans (CSPGs) in the glial scar. The family of Rho GTPases, which includes Cdc42, Rac1, and RhoA, is involved in growth cone dynamics. Although the response of neural cells to the inactivation of Rho when contacting myelin-related substrates, or CSPG, has been investigated, Rac1's and Cdc42's abilities to modulate CSPG-dependent inhibition have yet to be explored. In this study, a stripe assay was utilized to examine the effects of modulating all three Rho GTPases on neurite extension across inhibitory CSPG lanes. Alternating laminin (LN) and CSPG lanes were created and NG108-15 cells and E9 chick dorsal root ganglia (DRGs) were cultured on the lanes. By using the protein delivery agent Chariot, the neuronal response to exposure of constitutively active (CA) and dominant negative (DN) mutants of the Rho GTPases, along with the bacterial toxin C3, was determined by quantifying the percentage ratio of neurites crossing the CSPG lanes. CA-Cdc42, CA-Rac1, and C3 transferase significantly increased the number of neurites crossing into the CSPG lanes compared with the negative controls for both the NG108-15 cells and the E9 chick DRGs. We also show that these mutant proteins require the delivery vehicle, Chariot, to enter the neurons and affect neurite extension. Therefore, activation of Cdc42 and Rac, as well as inhibition of Rho, helps overcome the CSPG-dependent inhibition of neurite extension.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号