首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1284篇
  免费   31篇
  国内免费   11篇
儿科学   2篇
妇产科学   3篇
基础医学   133篇
口腔科学   308篇
临床医学   21篇
内科学   615篇
皮肤病学   14篇
神经病学   10篇
特种医学   9篇
外科学   47篇
综合类   94篇
预防医学   14篇
眼科学   9篇
药学   23篇
  1篇
中国医学   19篇
肿瘤学   4篇
  2023年   41篇
  2022年   258篇
  2021年   289篇
  2020年   53篇
  2019年   30篇
  2018年   34篇
  2017年   22篇
  2016年   26篇
  2015年   27篇
  2014年   52篇
  2013年   49篇
  2012年   39篇
  2011年   58篇
  2010年   49篇
  2009年   24篇
  2008年   33篇
  2007年   37篇
  2006年   10篇
  2005年   26篇
  2004年   25篇
  2003年   17篇
  2002年   11篇
  2001年   11篇
  2000年   6篇
  1999年   5篇
  1998年   3篇
  1997年   9篇
  1996年   10篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   11篇
  1990年   3篇
  1989年   3篇
  1988年   7篇
  1987年   4篇
  1986年   1篇
  1985年   7篇
  1984年   7篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
排序方式: 共有1326条查询结果,搜索用时 15 毫秒
41.
The work presents the possibility of fabricating materials for use as a matrix in sintered metallic-diamond tools with increased mechanical properties and abrasion wear resistance. In this study, the effect of micro-sized SiC, Al2O3, and ZrO2 additives on the wear behaviour of dispersion-strengthened metal-matrix composites was investigated. The development of metal-matrix composites (based on Fe–Mn–Cu–Sn–C) reinforced with micro-sized particles is a new approach to the substitution of critical raw materials commonly used for the matrix in sintered diamond-impregnated tools used for the machining of abrasive stone and concrete. The composites were prepared using spark plasma sintering (SPS). Apparent density, microstructural features, phase composition, Young’s modulus, hardness, and abrasion wear resistance were determined. An increase in the hardness and wear resistance of the dispersion-strengthened composites as compared to the base material (Fe–Mn–Cu–Sn–C) and the commercial alloy Co-20% WC provides metallic-diamond tools with high-performance properties.  相似文献   
42.
The aim of the paper is the development of a third-order theory for laminated composite plates that is able to accurately investigate their bending behavior in terms of displacements and stresses. The starting point is given by the corresponding Reddy’s Third-order Shear Deformation Theory (TSDT). This model is then generalized to consider simultaneously the Classical Laminated Plate Theory (CLPT), as well as the First-order Shear Deformation Theory (FSDT). The constitutive laws are modified according to the principles of the nonlocal strain gradient approach. The fundamental equations are solved analytically by means of the Navier methodology taking into account cross-ply and angle-ply lamination schemes. The numerical applications are presented to highlight the nonlocal effects on static behavior.  相似文献   
43.
This research work aims at investigating the influence of a fixed content of silicon nitride (Si3N4) and varied contents of graphene nanoplatelets (GNPs) on the physical (density, structural, morphological) and mechanical properties (microhardness, nanoindentation) of Al-Si3N4-GNPs composites. The composites were fabricated by a microwave-assisted powder metallurgy route. The Si3N4 concentration was fixed at (5 wt.%) in Al-Si3N4-GNPs composites while the GNPs concentration was varied between (0 wt.%) to (1.5 wt.%) with an increment of (0.5 wt.%). The structural analysis indicates the formation of phase pure materials with high crystallinity. The microstructural analysis confirmed the presence of the Si3N4 and GNPs showing enhanced agglomeration with the increasing amount of GNPs. Moreover, the surface roughness of the synthesized composites increases with an increasing amount of GNPs reaching its maximum value (RMS = 65.32 nm) at 1.5 wt.% of GNPs. The Al-Si3N4-GNPs composites exhibit improved microhardness and promising load-indentation behavior during nanoindentation when compared to pure aluminum (Al). Moreover, Al-Si3N4-GNPs composites demonstrate higher values of compressive yield strength (CYS) and ultimate compressive strength (UCS) when compared to pure Al despite showing a declining trend with an increasing amount of GNPs in the matrix. Finally, a shear mode of fracture is prevalent in Al-Si3N4-GNPs composites under compression loading.  相似文献   
44.
This study examined the effect of adding synthetic fibers, that is, polypropylene (PP) and nylon (Ny), on explosive spalling and residual tensile mechanical properties of high-performance fiber-reinforced cementitious composites (HPFRCCs). Three different matrix strengths (100 MPa, 140 MPa, and 180 MPa), four different volume contents of the synthetic fibers (0%, 0.2%, 0.4%, and 0.6%), and three different exposure time (1 h, 2 h, and 3 h) based on the Internatinoal Organization for Standardization (ISO) fire curve were adopted as variables for this experiment. The experimental results revealed that the addition of synthetic fibers improved the resistance to explosive spalling induced by high-temperature, especially when PP and Ny were mixed together. For a higher matrix strength, greater volume content of the synthetic fibers was required to prevent explosive spalling, and higher residual strengths were obtained after the fire tests. An increase in the volume fraction of the synthetic fibers clearly prevented explosive spalling but did not affect the residual tensile strength. In the case of a higher matrix strength, a reduction in the strength ratio was observed with increased exposure time.  相似文献   
45.
Multi-materials of metal-polymer and metal-composite hybrid structures (MMHSs) are highly demanded in several fields including land, air and sea transportation, infrastructure construction, and healthcare. The adoption of MMHSs in transportation industries represents a pivotal opportunity to reduce the product’s weight without compromising structural performance. This enables a dramatic reduction in fuel consumption for vehicles driven by internal combustion engines as well as an increase in fuel efficiency for electric vehicles. The main challenge for manufacturing MMHSs lies in the lack of robust joining solutions. Conventional joining processes, e.g., mechanical fastening and adhesive bonding involve several issues. Several emerging technologies have been developed for MMHSs’ manufacturing. Different from recently published review articles where the focus is only on specific categories of joining processes, this review is aimed at providing a broader and systematic view of the emerging opportunities for hybrid thin-walled structure manufacturing. The present review paper discusses the main limitations of conventional joining processes and describes the joining mechanisms, the main differences, advantages, and limitations of new joining processes. Three reference clusters were identified: fast mechanical joining processes, thermomechanical interlocking processes, and thermomechanical joining processes. This new classification is aimed at providing a compass to better orient within the broad horizon of new joining processes for MMHSs with an outlook for future trends.  相似文献   
46.
Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.  相似文献   
47.
In order to improve flexural and impact performance, thin panels of steel fiber-reinforced ultra-high performance concrete (UHPC) were further reinforced with external layers of continuous fiber-reinforced thermoplastic (CFRTP) composites. CFRTP sheets were bonded to 305 × 305 × 12 mm UHPC panels using two different techniques. First, unidirectional E-glass fiber-reinforced tapes of polyethylene terephthalate glycol-modified (PETG) were arranged in layers and fused to the UHPC panels through thermoforming. Second, E-glass fiber woven fabrics were placed on the panel faces and bonded by vacuum infusion with a methyl methacrylate (MAA) polymer. Specimens were cut into four 150 mm square panels for quasi-static and low-velocity impact testing in which loads were applied at the panel centers. Under quasi-static loading, both types of thermoplastic composite reinforcements led to a 150–180% increase in both peak load capacity and toughness. Impact performance was measured in terms of both residual deformation and change in specimen compliance, and CFRTP additions were reduced both by 80% to 95%, indicating an increase in damage resistance. While both reinforcement fabrication techniques provided added performance, the thermoforming method was preferable due to its simplicity and fewer specialized tool requirements.  相似文献   
48.
In this work, aluminium alloy ADC12 reinforced with various amounts of ZrB2 (0 wt.%, 3 wt.%, 6 wt.%, 9 wt.%) were synthesized by an in-situ reaction of molten aluminium with inorganic salts K2ZrF6 & KBF4. XRD, EDAX, and SEM techniques are used for the characterization of the fabricated composite. XRD analysis revealed the successful in situ formation of ZrB2 in the composite. From the SEM images, it was concluded that the distribution of reinforcement was homogeneous in the composites. A study of mechanical and tribological properties under the dry sliding condition of ZrB2-reinforced ADC12 alloy has also been carried out. It is seen that there is an increase in tensile strength by 18.8%, hardness by 64.2%, and an increase in wear resistance of the material after reinforcement. The ductility of the material decreased considerably with an increase in the amount of reinforcement. The composite’s impact strength decreased by 27.7% because of the addition of hard ZrB2 particulates.  相似文献   
49.
Nanostructured FeS dispersed onto N, S dual-doped carbon nanotube–graphene composite support (FeS/N,S:CNT–GR) was prepared by a simple synthetic method. Annealing an ethanol slurry of Fe precursor, thiourea, carbon nanotube, and graphene oxide at 973 K under N2 atmosphere and subsequent acid treatment produced FeS nanoparticles distributed onto the N, S-doped carbon nanotube–graphene support. The synthesized FeS/N,S:CNT–GR catalyst exhibited significantly enhanced electrochemical performance in the oxygen reduction reaction (ORR) compared with bare FeS, FeS/N,S:GR, and FeS/N,S:CNT with a small half-wave potential (0.827 V) in an alkaline electrolyte. The improved ORR performance, comparable to that of commercial Pt/C, could be attributed to synergy between the small FeS nanoparticles with a high activity and the N, S-doped carbon nanotube–graphene composite support providing high electrical conductivity, large surface area, and additional active sites.  相似文献   
50.
The present work deals with the evaluation of the effect of ZrO2 on the structure and selected properties of shapes obtained using the centrifugal slip casting method. The samples were made of alumina and zirconia. The applied technology made it possible to produce tubes with a high density reaching 99–100% after sintering. Very good bonding was obtained at the Al2O3/ZrO2 interphase boundaries with no discernible delamination or cracks, which was confirmed by STEM observations. In the case of Al2O3/ZrO2 composites containing 5 vol.% and 10 vol.% ZrO2, the presence of equiaxial ZrO2 grains with an average size of 0.25 µm was observed, which are distributed along the grain boundaries of Al2O3. At the same time, the composites exhibited a very high hardness of 22–23 GPa. Moreover, the environmental influences accompanying the sintering process were quantified. The impacts were determined using the life cycle analysis method, in the phase related to the extraction and processing of raw materials and the process of producing Al2O3/ZrO2 composites. The results obtained show that the production of 1 kg of sintered composite results in greenhouse gas emissions of 2.24–2.9 kg CO2 eq. which is comparable to the amount of emissions accompanying the production of 1 kg of Polyvinyl Chloride (PVC), Polypropylene (PP), or hot-rolled steel products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号