首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   3篇
口腔科学   1篇
临床医学   2篇
内科学   158篇
皮肤病学   1篇
外科学   2篇
综合类   6篇
药学   4篇
  2023年   3篇
  2022年   70篇
  2021年   72篇
  2020年   6篇
  2015年   6篇
  2014年   5篇
  2013年   5篇
  2012年   3篇
  2009年   2篇
  1995年   1篇
  1988年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
71.
Many places in the world suffer from a shortage of river sand because of population growth and environmental protection, and people have to replace river sand with manufactured sand (M-sand). In this study, M-sand was adopted as aggregate and the effect of the mix design (paste fluidity (PF) and paste-to-aggregate ratio (P/A)) on the properties of porous mortar was investigated through a combined experimental, statistical and response surface method (RSM). By including variations in both P/A (0.16–0.26) and PF (160–200 mm), the method was utilized to develop ANOVA models and construct response surface and contour lines. The experimental results revealed that the compressive strength of the porous mortar increased by 62.3% to a value of 34.1 MPa while the PF increased to 190 mm from 160 mm at a P/A of 0.20, and the water permeability coefficient was 7.2 mm/s under the same conditions. In addition, the ANOVA analysis of the measured properties revealed a strong interactive effect of the paste-to-aggregate ratio and paste fluidity on the porous mortar properties, and the developed relationship models between the variables and responses were accurate. A porous mortar with a compressive strength over 30 MPa and a permeability coefficient over 7 mm/s could be conveniently designed by RSM. Additionally, the compressive strength of the porous concrete reached more than 40 MPa at a P/A of 0.26.  相似文献   
72.
The production of factory-made mortars is a multicomponent system. Viscosity-modifying admixtures (VMAs) are an inherent ingredient of these materials. The correct choice of the amount and type of these admixtures is important from the practical and scientific points of view. In this article, the use of cellulose ether (CE) and starch ether (SE) in cement pastes and mortars is studied. This research focuses on the hydration process and fresh-state properties of mortars because this subject determines the correct choice of the amount and type of admixture used, and the results determine the application and properties of hardened mortars. Polymers were added in the range from 0.056% to 0.22% in relation to the dry ingredients of the mortar. The research showed that cellulose ether had the greatest impact on the consistency, air content, bulk density, and water retention of ordinary dry-mix mortars. On the other hand, starch ether affected the hydration process, delaying the setting and hardening processes much more than cellulose ether. The action of these admixtures rose with the increase in the amount of polymer used in different ways (depending on the type of ether).  相似文献   
73.
Noise pollution is an issue of high concern in urban environments and current standards and regulations trend to increase acoustic insulation requirements concerning airborne noise control. The design and development of novel building materials with enhanced acoustic performance is an efficient solution to mitigate this problem. Their application as renders and plasters can improve the acoustic conditions of existing and brand-new buildings. This paper reports the acoustic performance of eleven multiscale porous lime-cement mortars (MP-LCM) with two types of fibers (cellulose and polypropylene), gap-graded sand, and three lightweight aggregates (expanded clay, perlite, and vermiculite). Gap-graded sand was replaced by 25 and 50% of lightweight aggregates. A volume of 1.5% and 3% of cellulose fibers were added. The experimental study involved a physical characterization of properties related to mortar porous microstructure, such as apparent density, open porosity accessible to water, capillarity absorption, and water vapor permeability. Mechanical properties, such as Young’s modulus, compressibility modulus, and Poisson’s ratio were evaluated with ultrasonic pulse transmission tests. Acoustic properties, such as acoustic absorption coefficient and global index of airborne noise transmission, were measured using reduced-scale laboratory tests. The influence of mortar composition and the effects of mass, homogeneity, and stiffness on acoustic properties was assessed. Mortars with lower density, lower vapor permeability, larger open porosity, and higher Young’s and compressibility modulus showed an increase in sound insulation. The incorporation of lightweight aggregates increased sound insulation by up to 38% compared to the gap-graded sand reference mixture. Fibers slightly improved sound insulation, although a small fraction of cellulose fibers can quadruplicate noise absorption. The roughness of the exposed surface also affected sound transmission loss. A semi-quantitative multiscale model for acoustic performance, considering paste thickness, active void size, and connectivity of paste pores as key parameters, was proposed. It was observed that MP-LCM with enhanced sound insulation, slightly reduced sound absorption.  相似文献   
74.
For brittle and quasi-brittle materials such as rock and concrete, the impact-resistance characteristics of the corresponding engineering structures are key to successful application under complex service environments. Modeling of concrete-like slab fractures under impact loading is helpful to analyze the failure mechanism of an engineering structure. In this paper, simulation models of impact tests of a cement mortar slab were developed, and a continuum–discontinuum element method (CDEM) was used for dynamic analysis. Concretely, the cracking simulations of a mortar slab when considering the hammer shape and impact velocity were conducted, and the impact process and failure results of the slab structure were analyzed. The results showed that the top fracture area of the mortar slab was significantly smaller than that of slab bottom under impact loadings of the drop hammer. The impact velocity was an important factor that affected the mortar slab’s cracking. With the increase in the initial impact velocity, the effective fracture area of the slab structure increased significantly; the impact force and rupture degree of the mortar slab also showed a linear growth trend. The shapes of the impact hammerhead also had a significant effect on the crack model of the mortar slab. The effective fracture zones of slab structures were close under circular and square hammers, while the effective fracture zone was significantly larger under a rectangular hammer impact. The peak value (45.5 KN) of the impact force under a circular hammer was significantly smaller than the peak value (48.7 KN) of the impact force under the rectangular hammer. When considering the influence of the stress concentration of the impact hammerhead, the maximum impact stress of the rectangular hammer was 147.3 MPa, which was significantly greater than that of the circular hammer impact (maximum stress of 87.5 MPa). This may have meant that the slab structures were prone to a directional rupture that mainly propagated along the long axis of the rectangular hammerhead. This impact mode is therefore more suitable for rehabilitation and reconstruction projects of slab structures.  相似文献   
75.
《Dental materials》2022,38(1):121-132
ObjectiveTo fabricate and characterise a novel chairside CAD/CAM composite dental materials. These composites have a nacre-like anisotropic microstructure, consisting of highly aligned ceramic scaffolds infiltrated with polymer.MethodBi-directional freeze casting of alumina ceramic suspension was used to fabricate highly aligned ceramic scaffolds that were subsequently uniaxially pressed to control the ceramic volume fraction and then infiltrated with UDMA/TEGDMA polymer. The produced composites were subjected to mechanical testing, namely three-point bending, hardness and fracture toughness tests.ResultsNovel biomimetic ceramic/polymer composites (BCPCs) were fabricated with nacre-like brick and mortar anisotropic microstructure. The mechanical properties were dependent on the ceramic volume fraction. The 70 vol% BCPC had sufficient flexural strength (135.08–145.77 MPa), stiffness (57.75–61.22 GPa) and hardness (3.07–3.36 GPa) and showed remarkable fracture resistance with KIC value of (2.54 MPa m1/2).SignificantNovel biomimetic ceramic/polymer composites show great potential as the next generation of CAD/CAM dental materials, as they closely resemble the combined mechanical properties of dentine and enamel.  相似文献   
76.
The axial tensile properties of FRP mesh-reinforced ECC composites (TRE) were investigated experimentally under the consideration of four influencing factors: grid type, number of reinforcement layers, ECC matrix thickness, and sticky sand treatment on the grid surface. The test results showed that the axial stiffness and tensile strength of the composite were significantly increased, and the tensile properties were significantly improved under the effect of FRP grid reinforcement. Increasing the thickness of the ECC matrix can obviously improve the crack resistance of composites. The ultimate tensile strength of FRP lattice-reinforced ECC composites increased significantly with the increase in the number of lattice layers, but had no significant effect on the crack resistance. The tensile properties of CFRP grid-reinforced ECC composites were slightly better compared to BFRP grid-reinforced ECC composites. The crack resistance and ultimate tensile strength of the composites were slightly improved by impregnating the surface of the FRP grid with adhesive-bonded sand treatment. Based on the experimental data, the tensile stress–strain constitutive model of FRP grid-reinforced ECC composites is established. The calculation results show that the theoretical values of the model agree well with the experimental values. Therefore, it can be used to reflect the stress–strain change state of FRP lattice-reinforced ECC composites during axial tension.  相似文献   
77.
目的比较丙泊酚和依托咪酯复合利多卡因胶浆在胃镜下食管静脉曲张套扎术中的效果。方法胃镜下行食管静脉曲张套扎术的患者60例,随机分为两组,每组30例:P组静脉注射丙泊酚+口服利多卡因胶浆;E组静脉注射依托醚酯+口服利多卡因胶浆。记录两组患者入室时、置镜前、置镜时、苏醒后各时间点MAP、HR、SpO2及苏醒时间、不良反应情况。结果 P组置镜前、置镜时、苏醒后各时点的血压较入室时降低,心率较入室时慢,差异有统计学意义(P<0.05)。E组置镜前、置镜时、苏醒后各时点的血压和心率与入室时比较,差异无统计学意义(P>0.05)。两组意识完全恢复时间分别为(5.8±0.8)min,(5.9±0.9)min,差异无统计学意义(P>0.05)。结论丙泊酚和依托咪酯复合利多卡因胶浆均可用于胃镜下食管静脉曲张套扎术,两者临床效果确切,不良反应少,但在血流动力学的稳定上,依托咪酯似乎更具优势。  相似文献   
78.
Crystalline admixtures embedded in concrete may react in the presence of water and generate thin crystals able to fill pores, capillaries and micro-cracks. Once the concrete has dried, the crystalline chemicals sit dormant until another dose of water starts the crystallization again. The research aims to analyses the early age self-sealing effect of a crystalline admixture at a dosage rate of 1–3% of the cement mass. Specimens made with two types of gravel were pre-loaded with three-point bending to up to 90% of the ultimate capacity, and conditioned through wet–dry cycles. Micro-crack closure was measured with a microscope after pre-loading, and after 1 day, 4 days, 8 days, 14 days and 20 days of wet–dry exposure. The results show that an admixture content of 3% achieves the best early self-sealing performance. These results are also confirmed by probabilistic analyses, which also emphasize the self-sealing potential of lower ICW contents.  相似文献   
79.
Interventions in concrete heritage deal with challenges related to conservation, and must be performed from an integrated restoration perspective. In addition to the material technical performance, the aesthetic compatibility between the repair and the structure, in terms of colour and texture, needs to be ensured. Therefore, the characterisation of the restoration mortar concerning colour match and aging, and the mechanical and durability performances, is essential. In this article, the long-term behaviour of restoration mortar, previously designed and produced by the addition of pigments to white and grey cement-based reference mortar, is evaluated. The durability properties, colour change due to aging, and service life are estimated and analysed. An experimental program is performed to characterise the following properties: (i) water capillary absorption; (ii) accelerated carbonation; (iii) migration of chloride ions; (iv) electrical resistivity; and (v) shrinkage. The colour evolution, when exposed to carbonation, is measured through image processing. The obtained results allow the establishment of a correlation between durability and design parameters. Finally, service life considering deterioration due to steel corrosion is estimated, considering the carbonation resistance and the chloride diffusion values. It is concluded that the W/C ratio influences not only most of the characterised parameters, but also the type and content of the pigment. Furthermore, no colour variation due to carbonation is detected.  相似文献   
80.
Concrete is very sensitive to crack formation. As wide cracks endanger the durability, repair may be required. However, these repair works raise the life-cycle cost of concrete as they are labor intensive and because the structure becomes in disuse during repair. In 1994, C. Dry was the first who proposed the intentional introduction of self-healing properties in concrete. In the following years, several researchers started to investigate this topic. The goal of this review is to provide an in-depth comparison of the different self-healing approaches which are available today. Among these approaches, some are aimed at improving the natural mechanism of autogenous crack healing, while others are aimed at modifying concrete by embedding capsules with suitable healing agents so that cracks heal in a completely autonomous way after they appear. In this review, special attention is paid to the types of healing agents and capsules used. In addition, the various methodologies have been evaluated based on the trigger mechanism used and attention has been paid to the properties regained due to self-healing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号