首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
临床医学   3篇
内科学   37篇
预防医学   13篇
药学   4篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2017年   1篇
  2016年   1篇
  2015年   9篇
  2014年   7篇
  2013年   5篇
  2012年   13篇
  2011年   1篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2000年   1篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
11.
Cárdenas WB 《Viruses》2010,2(1):262-282
The members of the filoviruses are recognized as some of the most lethal viruses affecting human and non-human primates. The only two genera of the Filoviridae family, Marburg virus (MARV) and Ebola virus (EBOV), comprise the main etiologic agents of severe hemorrhagic fever outbreaks in central Africa, with case fatality rates ranging from 25 to 90%. Fatal outcomes have been associated with a late and dysregulated immune response to infection, very likely due to the virus targeting key host immune cells, such as macrophages and dendritic cells (DCs) that are necessary to mediate effective innate and adaptive immune responses. Despite major progress in the development of vaccine candidates for filovirus infections, a licensed vaccine or therapy for human use is still not available. During the last ten years, important progress has been made in understanding the molecular mechanisms of filovirus pathogenesis. Several lines of evidence implicate the impairment of the host interferon (IFN) antiviral innate immune response by MARV or EBOV as an important determinant of virulence. In vitro and in vivo experimental infections with recombinant Zaire Ebola virus (ZEBOV), the best characterized filovirus, demonstrated that the viral protein VP35 plays a key role in inhibiting the production of IFN-α/β. Further, the action of VP35 is synergized by the inhibition of cellular responses to IFN-α/β by the minor matrix viral protein VP24. The dual action of these viral proteins may contribute to an efficient initial virus replication and dissemination in the host. Noticeably, the analogous function of these viral proteins in MARV has not been reported. Because the IFN response is a major component of the innate immune response to virus infection, this chapter reviews recent findings on the molecular mechanisms of IFN-mediated antiviral evasion by filovirus infection.  相似文献   
12.
Integrins are involved in the binding and internalization of both enveloped and nonenveloped viruses. By using 3 distinct cell systems—CHO cells lacking expression of α5β1-integrin, HeLa cells treated with siRNA to α5-integrin, and mouse β1-integrin knockout fibroblasts, we show that α5β1-integrin is required for efficient infection by pseudovirions bearing the ebolavirus glycoprotein (GP). These integrins are necessary for viral entry but not for binding or internalization. Given the need for endosomal cathepsins B and L (CatB and CatL) to prime GPs for fusion, we investigated the status of CatB and CatL in integrin-positive and integrin-negative cell lines. α5β1-Integrin-deficient cells lacked the double-chain (DC) forms of CatB and CatL, and this correlated with decreased CatL activity in integrin-negative CHO cells. These data indicate that α5β1-integrin-negative cells may be refractory to infection by GP pseudovirions because they lack the necessary priming machinery (the double-chain forms of CatB and CatL). In support of this model, we show that GP pseudovirions that have been preprimed in vitro to generate the 19-kDa form of GP overcome the requirement for α5β1-integrin for infection. These results provide further support for the requirement for endosomal cathepsins for ebolavirus infection, identify the DC forms of these cathepsins as previously unrecognized factors that contribute to cell tropism of this virus, and reveal a previously undescribed role for integrins during viral entry as regulators of endosomal cathepsins, which are required to prime the entry proteins of ebolavirus and other pathogenic viruses.  相似文献   
13.
The first major outbreak of Marburg hemorrhagic fever (MHF) outside a laboratory environment occurred in the subdistrict of Watsa, Democratic Republic of Congo, from October 1998 to August 2000. We performed a serosurvey of household contacts of MHF patients to identify undetected cases, ascertain the frequency of asymptomatic Marburg infection, and estimate secondary attack risk and postintervention reproduction number. Contacts were interviewed about their exposure and symptoms consistent with MHF. Blood samples were tested for anti-Marburg immunoglobulin G (IgG). One hundred twenty-one (51%) of 237 identified contacts participated; 72 (60%) were not known to the health authorities. Two participating contacts were seropositive and reported becoming ill after the contact; no serologic evidence for asymptomatic or mild Marburg infection was found. The secondary attack risk was 21%; the postintervention reproduction number was 0.9, consistent with an outbreak sustained by repeated primary transmission, rather than large-scale secondary transmission.  相似文献   
14.
Ecologic and geographic distribution of filovirus disease   总被引:3,自引:0,他引:3  
We used ecologic niche modeling of outbreaks and sporadic cases of filovirus-associated hemorrhagic fever (HF) to provide a large-scale perspective on the geographic and ecologic distributions of Ebola and Marburg viruses. We predicted that filovirus would occur across the Afrotropics: Ebola HF in the humid rain forests of central and western Africa, and Marburg HF in the drier and more open areas of central and eastern Africa. Most of the predicted geographic extent of Ebola HF appear to have been observed; Marburg HF has the potential to occur farther south and east. Ecologic conditions appropriate for Ebola HF are also present in Southeast Asia and the Philippines, where Ebola Reston is hypothesized to be distributed. This first large-scale ecologic analysis provides a framework for a more informed search for taxa that could constitute the natural reservoir for this virus family.  相似文献   
15.
16.
Ebola virus (EBOV) causes viral hemorrhagic fever in humans and can have clinical fatality rates of ~60%. The EBOV genome consists of negative sense RNA that encodes seven proteins including viral protein 40 (VP40). VP40 is the major Ebola virus matrix protein and regulates assembly and egress of infectious Ebola virus particles. It is well established that VP40 assembles on the inner leaflet of the plasma membrane of human cells to regulate viral budding where VP40 can produce virus like particles (VLPs) without other Ebola virus proteins present. The mechanistic details, however, of VP40 lipid-interactions and protein-protein interactions that are important for viral release remain to be elucidated. Here, we mutated a loop region in the N-terminal domain of VP40 (Lys127, Thr129, and Asn130) and find that mutations (K127A, T129A, and N130A) in this loop region reduce plasma membrane localization of VP40. Additionally, using total internal reflection fluorescence microscopy and number and brightness analysis we demonstrate these mutations greatly reduce VP40 oligomerization. Lastly, VLP assays demonstrate these mutations significantly reduce VLP release from cells. Taken together, these studies identify an important loop region in VP40 that may be essential to viral egress.  相似文献   
17.
Health research programs targeting the population of Gabon and Equatorial Africa at the International Center for Medical Research in Franceville (CIRMF), Gabon, have evolved during the years since its inception in 1979 in accordance with emerging diseases. Since the reemergence of Ebola virus in Central Africa, the CIRMF “Emerging Viral Disease Unit” developed diagnostic tools and epidemiologic strategies and transfers of such technology to support the response of the National Public Health System and the World Health Organization to epidemics of Ebola virus disease. The Unit carries out a unique investigation program on the natural history of the filoviruses, emergence of epidemics, and Ebola virus pathogenesis. In addition, academic training is provided at all levels to regional and international students covering emerging conditions (host factors, molecular biology, genetics) that favor the spread of viral diseases.  相似文献   
18.
Viruses of the family Filoviridae represent significant health risks as emerging infectious diseases as well as potentially engineered biothreats. While many research efforts have been published offering possibilities toward the mitigation of filoviral infection, there remain no sanctioned therapeutic or vaccine strategies. Current progress in the development of filovirus therapeutics and vaccines is outlined herein with respect to their current level of testing, evaluation, and proximity toward human implementation, specifically with regard to human clinical trials, nonhuman primate studies, small animal studies, and in vitro development. Contemporary methods of supportive care and previous treatment approaches for human patients are also discussed.  相似文献   
19.
ABSTRACT

Introduction: Small animal models have played a critical role in understanding the pathogenesis and transmission of disease caused by filoviruses. Notably, small animals have served to identify and validate many different approaches to countering infection with these highly pathogenic viruses. Nonetheless, predictive efficacy between each model does not appear to be equivalent as higher order animals seem to be more prognostic and therefore successful in the evaluation of medical countermeasures (MCM).

Areas covered: This review comprehensively details the available small animal models of filovirus infection and discusses the benefits and shortcomings of each model with respect to the development of MCM. An up-to-date evaluation of mouse, hamster, guinea pig, and ferret models is provided.

Expert opinion: The recent development of the domestic ferret model for ebolavirus offers a small animal model that faithfully reproduces most features of human disease without the need for viral adaptation or an immunocompromised host. That being said, choosing a small animal model to evaluate a particular MCM must consider potential confounders associated with each model. These confounding issues include incomplete host immune systems or mutations in the challenge virus that enables the disease.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号