首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   8篇
  国内免费   3篇
妇产科学   2篇
基础医学   53篇
临床医学   3篇
内科学   58篇
皮肤病学   2篇
神经病学   13篇
特种医学   2篇
外科学   5篇
综合类   11篇
预防医学   3篇
眼科学   9篇
药学   20篇
中国医学   3篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   6篇
  2013年   9篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   9篇
  2008年   6篇
  2007年   4篇
  2006年   10篇
  2005年   6篇
  2004年   7篇
  2003年   9篇
  2002年   8篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1976年   2篇
排序方式: 共有184条查询结果,搜索用时 250 毫秒
71.
Modified needle oxygen microelectrodes and vital microscopy were used to measure transmural oxygen tension gradients (PO2) in pial arterioles with lumen diameters of 20–90  μm. A relationship between the magnitude of the transmural PO2 gradient and arteriole wall tone was found: in control conditions, PO2 gradients were 1.17 ± 0.06 mmHg/μm (n  = 40), while in conditions of arteriolar wall dilation the transmural PO2 gradient decreased to 0.68 ± 0.04 mmHg/μm (p  <  0.001, n  = 38). These data provide the first measurements of transmural PO2 gradients in pial arterioles of different calibers at different levels of vascular tone and have fundamental importance for assessing the role of arterial microvessels in tissue oxygen supply processes. The results obtained here provide evidence that oxygen consumption by the vessel wall is within the range characteristic of enveloping tissues and that oxygen consumption by the endothelial cell layer probably has no significant effect on the magnitude of the transmural PO2 gradient. Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 4, pp. 394–405, April, 2008.  相似文献   
72.
OBJECTIVE: Oxygen free radical production in hypertension may be associated with elevated arteriolar tone and organ injury. Previous results suggest an enhanced level of oxygen free radical formation in microvascular endothelium and in circulating neutrophils associated with xanthine oxidase activity in the spontaneously hypertensive rats (SHR) compared with their normotensive controls, the Wistar Kyoto rats (WKY). The aim of this study was to gain more detailed understanding of where oxidative enzymes are located in the microcirculation. METHODS: An approach was developed to delineate the cellular distribution of two selected oxidative enzymes, xanthine oxidase and nicotinamide adenine dinucleotide phosphate (NADPH) dependent oxidase (protein 67-kDa fraction). Immunolabeling with peroxidase substrate was utilized, which permits full delineation of the primary antibody in all microvascular structures of the mesentery. RESULTS: Xanthine oxidase is present in the endothelium of all segments of the microcirculation, in mast cells, and in parenchymal cells of the mesentery. NADPH oxidase can be detected in the endothelium, leukocytes, and mast cells and with lower levels in parenchymal cells. The mesentery of WKY and SHR has similar enzyme distributions with enhancements on the arteriolar and venular side of the microcirculation that coincide with the sites of enhanced free radical production recently reported. Immune label measurements under standardized conditions indicate that both enzymes are significantly enhanced in the SHR. Adrenalectomy, which serves to reduce the blood pressure and free radical production of the SHR to normotensive levels, leads to a reduction of NADPH and xanthine oxidase to normotensive levels, while supplementation of adrenalectomized SHR with dexamethasone significantly increases the oxidase expression in several parts of the microcirculation to levels above the WKY rats. CONCLUSION: The results indicate that enhanced expression of NADPH and xanthine oxidase in the SHR depends on an adrenal pathway that is detectable in the arteriolar and venular network at high and low pressure regions of the circulation.  相似文献   
73.
1. Nitric oxide (NO) plays an important role in the control of glomerular haemodynamics and is synthesized from the amino acid L-arginine by a family of enzymes, NO synthase (NOS). 2. Nitric oxide synthase is present in the endothelium and also in the macula densa, a plaque of specialized tubular epithelial cells. Endothelial NOS is known to be stimulated by shear stress and hormones, while the factor that regulates the activity of macula densa NOS remains undefined. 3. Studies with the in vitro microperfusion of glomerular arterioles have shown that the constriction of afferent arterioles (Af-Art) induced by myogenic responses and angiotensin II (AngII) is stronger in the absence rather than in the presence of luminal flow. Furthermore, endothelial disruption or NOS inhibition abolishes such differences, suggesting that flow through the lumen stimulates the endothelium to synthesize and release NO, which in turn attenuates both the myogenic response and the action of AngII in the Af-Art. 4. In contrast, NOS inhibitors have no effect on efferent arteriolar (Ef-Art) constriction induced by AngII. 5. In preparations in which Af-Art and the macula densa are simultaneously microperfused, selective inhibition of macula densa NOS has been shown to augment Af-Art constriction when the NaCl concentration at the macula densa is high, suggesting that the macula densa produces NO, which in turn modulates tubuloglomerular feedback. 6. Thus, the differential actions of NO in the Af-Art, Ef-Art and the macula densa may be important in the control of glomerular haemodynamics under various physiological and pathological conditions.  相似文献   
74.
Hypertension is an important cardiovascular risk factor. High blood pressure per se is not a disease but a hemodynamic alteration associated with vascular disease. Two classes of drugs are especially effective in lowering blood pressure and preventing cardiovascular complications, angiotensin converting enzyme (ACE) inhibitors and calcium antagonists. The hemdynamic effects of ACE inhibitors and calcium antagonists are complementary. While ACE inhibitors inhibit the renin-angiotensin system and reduce sympathetic outflow, calcium antagonists dilate large conduit and resistance arteries. Certain calcium antagonists, such as verapamil, lower heart rate. In the blood vessel wall, the local vascular effects of ACE inhibitors and calcium antagonists are also complementary. While ACE inhibitors inhibit activation of angiotensin I into angiotensin II and prevent the breakdown of bradykinin (which stimulates nitric oxide and prostacyclin formation), calcium antagonists inhibit the effects of vasoconstrictor hormones such as angiotensin II at the level of vascular smooth muscle by reducing calcium inflow and facilitating the vasodilator effects of nitric oxide. Calcium antagonists reduce smooth muscle cell proliferation and atherosclerosis. In hypertensive animals, verapamil and trandolapril normalize endothelial dysfunction. In large angiographic trials, nifedipine and nicardipine reduced the development of new atherosclerotic plaques. After myocardial infarction, verapamil reduces mortality and cardiac events in patients without heart failure. In contrast, ACE inhibitors are effective after myocardial infarction in patients with impaired left ventricular function. Urinary albumin excretion rate decreases during ACE inhibitor therapy or with a calcium antagonist such as verapamil; combination of the two drugs has an additive effect. In resistance arteries, hypertension is associated with an increased media/lumen ratio. ACE inhibitors, but not beta-blockers, markedly improve these structural changes. In summary, ACE inhibitors and calcium antagonists have a complementary profile, both in their hemodynamic and local vascular action. Hence, combination therapy with these two classes of drugs appears particularly useful in patients with hypertension, not only to lower blood pressure, but hopefully to achieve improved cardiovascular protection.  相似文献   
75.
Summary The overproduction of nitric oxide (NO) is reported in the diabetic kidney and considered to be involved in glomerular hyperfiltration. The precise mechanism of NO production in the diabetic kidney is, however, not known. In this report, we compare the localization of endothelial cell nitric oxide synthase (ecNOS) isoform expression in the kidney tissue of streptozotocin (STZ)-induced diabetic rats and 5/6 nephrectomized rats and clarify the pivotal role of ecNOS for the glomerular hyperfiltration in the early stages of diabetic nephropathy. In diabetic rats, the diameters of afferent arterioles, the glomerular volume, creatinine clearance, and urinary NO2/NO3 were increased after the induction of diabetes. Efferent arterioles were, however, not altered. Insulin or L-NAME treatment returned the diameters of afferent arterioles, glomerular volume, creatinine clearance, and urinary NO2/NO3 to normal. The expression of ecNOS in afferent arterioles and glomeruli of diabetic rats increased during the early stages of the disease, but was not altered in efferent arterioles. Treatment with either insulin or L-NAME decreased ecNOS expression in afferent arterioles and in glomeruli. In contrast, the ecNOS expression was upregulated in both afferent and efferent arterioles and in the glomeruli of 5/6 nephrectomized rats, where the dilatation of afferent and efferent arterioles and glomerular enlargement were observed. Treatment with L-NAME ameliorated the ecNOS expression and dilatation of arterioles. We conclude that enhanced NO synthesis by ecNOS in afferent arterioles and glomerular endothelial cells in response to the hyperglycaemic state could cause preferential dilatation of afferent arterioles, which ultimately induces glomerular enlargement and glomerular hyperfiltration. [Diabetologia (1998) 41: 1426–1434] Received: 5 January 1998 and in revised form: 27 April 1998  相似文献   
76.
患者女,65岁。因血肌酐升高(155μmol/L)2月余就诊。入院后肾脏穿刺活检组织病理提示,肾小血管闭塞及肾间质纤维化,起初考虑为全身动脉粥样硬化一部分,予瑞舒伐他汀20 mg每晚1次、福辛普利10 mg每日1次、倍他乐克47.5 mg每日1次、阿司匹林0.1 g每日1次治疗,血肌酐仍波动于200μmol/L左右。进一步完善肾组织病理刚果红染色,发现砖红色物质普遍沉积于肾小叶间动脉及入球小动脉管壁内,结合血游离轻链κ340 mg/L,血游离轻链κ/λ为10.932,肾轻链型淀粉样变诊断明确。予硼替佐米(2 mg,第1、8、15、22天皮下注射)、环磷酰胺(0.3 g,第1、8、15、22天口服)、地塞米松(40 mg,第1、8、15、22天口服)方案(BCD)化疗,每28天1个疗程,化疗3个疗程后,患者达到部分缓解,血肌酐降至180μmol/L。  相似文献   
77.
Functional hyperemia is the regional increase in cerebral blood flow upon increases in neuronal activity which ensures that the metabolic demands of the neurons are met. Hypertension is known to impair the hyperemic response; however, the neurovascular coupling mechanisms by which this cerebrovascular dysfunction occurs have yet to be fully elucidated. To determine whether altered cortical parenchymal arteriole function or astrocyte signaling contribute to blunted neurovascular coupling in hypertension, we measured parenchymal arteriole reactivity and vascular smooth muscle cell Ca2+ dynamics in cortical brain slices from normotensive Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. We found that vasoconstriction in response to the thromboxane A2 receptor agonist U46619 and basal vascular smooth muscle cell Ca2+ oscillation frequency were significantly increased in parenchymal arterioles from SHR. In perfused and pressurized parenchymal arterioles, myogenic tone was significantly increased in SHR. Although K+-induced parenchymal arteriole dilations were similar in WKY and SHR, metabotropic glutamate receptor activation-induced parenchymal arteriole dilations were enhanced in SHR. Further, neuronal stimulation-evoked parenchymal arteriole dilations were similar in SHR and WKY. Our data indicate that neurovascular coupling is not impaired in SHR, at least at the level of the parenchymal arterioles.  相似文献   
78.
A recent article published in Nature Metabolism, “A network of trans-cortical capillaries as a mainstay for blood circulation in long bones,” explained the long bone vascularity. In the mouse model, the authors demonstrated hundreds of transcortical vessels (TCVs) commencing from the bone marrow and traversing the whole cortical thickness. They realized that TCVs were the same as bleeding vessels of periosteal bed observed in the human tibia and femoral epiphysis during surgery. TCVs expressed arterial or venous markers and were proposed to be the backbone of bone vascularity as 80% of arterial and 59% of venous blood distributed through them. This new evidence challenged the existence of the “cortical capillaries” stated in previous literature. We conducted a review of the existing literature to compare this model with those in earlier research. The bone vascularity model was explained by many researchers who did their work in animal models like pig, dog, rabbit, and mouse. The TCVs were identified in these animal model studies as cortical capillaries or vessels of cortical canals. Studies are scarce, showing the presence of TCVs in humans. The role of TCVs in human cortical vascularity remains ambiguous until the substantial evidence is collected in future studies.  相似文献   
79.
1. The juxtaglomerular apparatus (JGA) consists of a tubular component, the macula densa (MD), attached to a vascular component consisting of the afferent and efferent arterioles and the extraglomerular mesangium. The JGA is richly innervated by sympathetic fibres. 2. The MD is morphologically, histochemically and functionally different from the ascending thick portion of the loop of Henle where it is located. 3. The vascular component includes the vascular smooth muscle cells of the arteriole, the renin-producing cells or juxtaglomerular cells, extraglomerular mesangial cells (Goormagh-tigh cells) and endothelial cells. They are coupled by gap junctions. 4. Physiological evidence indicates that the composition of tubular fluid at the MD regulates renin secretion and glomerular haemodynamics and that the JGA is important in the maintenance of body salt-water homeostasis. Evidence suggests that the MD exerts its action on the vascular component through a paracrine mechanism.  相似文献   
80.
Purpose: To investigate whether retinal vessel calibre measurements on optical retinal photography are affected by light and dark exposure prior to photography and whether the vessel calibre changes during an imaging sequence of several images. Methods: Digital optical retinal photographs were obtained from 32 healthy adults in two separate image sequences of six images during 1 min; one sequence with 10 min of dark exposure and one with 10 min of light exposure prior to imaging. Retinal arteriolar and venular calibres were measured computer‐assisted and summarized as central retinal artery and vein equivalents (CRAE and CRVE). Outcome measures were difference in calibres after prior light versus prior dark exposure and difference in calibre during each of the two imaging sequences. Results: CRVE was wider with prior light exposure (2.7%, p = 0.0001), comparing the first image in each image sequence. Within each sequence, there was a venular dilatation from first to last image, both with prior light exposure (1.7%, p = 0.0003) and prior dark exposure (3.1%, p < 0.0001), with the change less pronounced with prior light exposure (p = 0.0164). CRAE showed no significant change in either outcome. Conclusions: Retinal venular calibre was wider with light exposure prior to imaging and increased slightly during the imaging sequences, less pronounced after prior light than dark exposure. Measurement error due to these effects will probably be reduced by avoiding dark prior to imaging, and a possible bias effect of endothelial dysfunction may possibly be reduced by measuring calibre on an image taken early in the image sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号