首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   7篇
  国内免费   14篇
儿科学   13篇
妇产科学   3篇
基础医学   28篇
口腔科学   1篇
临床医学   43篇
内科学   128篇
皮肤病学   1篇
神经病学   6篇
特种医学   2篇
外科学   5篇
综合类   32篇
预防医学   28篇
眼科学   1篇
药学   52篇
中国医学   13篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   10篇
  2018年   9篇
  2017年   6篇
  2016年   4篇
  2015年   1篇
  2014年   36篇
  2013年   16篇
  2012年   9篇
  2011年   24篇
  2010年   10篇
  2009年   13篇
  2008年   15篇
  2007年   15篇
  2006年   14篇
  2005年   7篇
  2004年   12篇
  2003年   12篇
  2002年   10篇
  2001年   6篇
  2000年   1篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   9篇
  1981年   4篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   1篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
351.
Yousef MI  Awad TI  Elhag FA  Khaled FA 《Toxicology》2007,235(3):194-202
Stannous chloride (SnCl2) is a reducing chemical agent used in several man-made products. SnCl2 can generate reactive oxygen species (ROS). Therefore, the present study has been carried out to investigate the antioxidant action of l-ascorbic acid (AA) in minimizing SnCl2 toxicity on lipid peroxidation, antioxidant enzyme, and biochemical parameters in male New Zealand white rabbits. Animals were assigned to one of four treatment groups: 0mg AA and 0mg SnCl2/kg BW (control); 40 mg AA/kg BW; 20mg SnCl2/kg BW; 20mg SnCl2 plus 40 mg AA/kg BW. Rabbits were orally administered the respective doses every other day for 12 weeks. Results obtained showed that SnCl2 significantly (P<0.05) induced thiobarbituric acid-reactive substances (TBARS; the marker of lipid peroxidation) in plasma, while the activities of glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT), and the level of sulfhydryl groups (SH-group) were decreased (P<0.05) in blood plasma. Aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (AlP), acid phosphatase (AcP) and lactate dehydrogenase (LDH) activities were decreased (P<0.05). Stannous chloride significantly (P<0.05) increased the levels of plasma total lipid (TL), cholesterol, triglyceride (TG), low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL), glucose, urea and total bilirubin. On the other hand, the level of plasma high-density lipoprotein (HDL), total protein (TP), albumin (A) and globulin (G) were significantly (P<0.05) decreased. Ascorbic acid alone significantly decreased the levels of TBARS, lipids and urea, and increased the activities of GST, SOD and CAT, and the levels of SH-group and proteins. While the rest of the tested parameters were not affected. Also, the presence of AA with SnCl2 alleviated its harmful effects on most of the tested parameters. Therefore, the present results revealed that treatment with AA could minimize the toxic effects of stannous chloride.  相似文献   
352.
Inflammation is frequently present in the visceral fat and vasculature in certain patients with cardiovascular disease (CVD) and/or adult onset Diabetes Mellitus Type II (NIDDM). An hypothesis is presented which argues that repeated acute or chronic psychologically stressful states may cause this inflammatory process. The mediators are the major stress hormones norepinephrine (NE) and epinephrine (E) and cortisol together with components of the renin-angiotensin system (RAS), the proinflammatory cytokines (PIC), as well as free fatty acids (ffa), the latter as a result of lipolysis of neutral fat. NE/E commence this process by activation of NF(kappa)B in macrophages, visceral fat, and endothelial cells which induces the production of toll-like receptors which, when engaged, produce a cascade of inflammatory reactions comprising the acute phase response (APR) of the innate immune system (IIS). The inflammatory process is most marked in the visceral fat depot as well as the vasculature, and is involved in the metabolic events which culminate in the insulin resistance/metabolic syndromes (IRS/MS), the components of which precede and comprise the major risk factors for CVD and NIDDM. The visceral fat has both the proclivity and capacity to undergo inflammation. It contains a rich blood and nerve supply as well as proinflammatory molecules such as interleukin 6 (IL-6), tumor necrosis factor alpha (TNFalpha), leptin, and resistin, the adipocytokines, and acute phase proteins (APP) which are activated from adipocytes and/or macrophages by sympathetic signaling. The inflammation is linked to fat accumulation. Cortisol, IL-6, angiotensin II (angio II), the enzyme 11(beta) hydroxysteroid dehydrogenase-1 and positive energy balance, the latter due to increased appetite induced by the major stress hormones, are factors which promote fat accumulation and are linked to obesity. There is also the capacity of the host to limit fat expansion. Sympathetic signaling induces TNF which stimulates the production of IL-6 and leptin from adipocytes; these molecules promote lipolysis and ffa fluxes from adipocytes. Moreover, catecholamines and certain PIC inhibit lipoprotein lipase, a fat synthesizing enzyme. The brain also participates in the regulation of fat cell mass; it is informed of fat depot mass by molecules such as leptin and ffa. Leptin stimulates corticotrophin releasing hormone in the brain which stimulates the SNS and HPA axes, i.e. the stress response. Also, ffa through portal signaling from the liver evoke a similar stress response which, like the response to psychologic stress, evokes an innate immune response (IIR), tending to limit fat expansion, which culminates in inflammatory cascades, the IRS-MS, obesity and disease if prolonged. Thus, the brain also has the capacity to limit fat expansion. A competition apparently exists between fat expansion and fat loss. In "western" cultures, with excessive food ingestion, obesity frequently results. The linkage of inflammation to fat metabolism is apparent since weight loss diminishes the concentration of inflammatory mediators. The linkage of stress to inflammation is all the more apparent since the efferent pathways from the brain in response to fat signals, which results in inflammation to decrease and limit fat cell mass, is the same as the response to psychologic stress, which strengthens the hypothesis presented herein.  相似文献   
353.
Background  It is well known that the legume proteins have a lowering effect on plasma cholesterol and triacylglycerols (TG) concentrations compared to animal proteins. The protein itself, as well as non-protein constituents, naturally present in legumes may be implicated. Aim of the study  The effects of various dietary purified legumes proteins compared to casein, were determined on plasma TG level, VLDL concentration and composition. Moreover, lipoprotein lipase (LPL) activity in epididymal fat, gastrocnemius and heart was investigated to evaluate in these tissues their capacity to release free fatty acids from their TG substrate and the liver capacity to stock the TG. Methods  Weaning male Wistar rats were fed ad libitum one of the following diets: 200 g/kg diet of purified proteins of lentil (L), or chickpea (CP) or casein (CAS). At day 28, VLDL were isolated from plasma sample by a single ultracentrifugation flotation. Hepatic lipase and LPL activity in epididymal fat, gastrocnemius and heart were measured by using glycerol tri [9–10(n)-3H] oleate emulsion as substrate. Results  Compared with CAS diet, the CP and L protein diets exhibited similar cholesterolemia, but lower triglyceridemia (1.9-fold and 2.5-fold) and VLDL particle number, as measured by their reduced contents of TG and apolipoproteins. CP and L protein diets reduced liver TG and cholesterol by 31 and 45%, respectively compared to CAS diet. Furthermore, LPL activity in adipose tissue of rats fed CP or L was 1.6-fold lower than that of rats fed CAS. There was no significant difference in heart and gastrocnemius LPL activities with the three proteins. In contrast, hepatic lipase activity was higher in rats fed CP and L diets. Conclusion  The low food efficiency ratio of purified CP and L proteins related to CAS is associated with decreased plasma VLDL and adipose tissue LPL activity. The low liver TG concomitant with reduced TG and apolipoproteins contents of VLDL confirm that hypotriglyceridemia is essentially due to impaired synthesis, exportation and transport of TG by VLDL which prevent lipid storage in adipose tissue.  相似文献   
354.

Introduction

Perinatal changes in maternal glucose and lipid fluxes and de novo lipogenesis (DNL) are driven by hormones and nutrients. Docosahexaenoic acid (DHA) reduces, whereas insulin augments, nuclear abundance of sterol-regulatory-element-binding-protein-1 (SREBP-1), which promotes DNL, stearoyl-CoA-desaturase (SCD, also Δ9-desaturase), fatty acid-(FA)-elongation (Elovl) and FA-desaturation (FADS). Decreasing maternal insulin sensitivity with advancing gestation and compensatory hyperinsulinemia cause augmented postprandial glucose levels, adipose tissue lipolysis and hepatic glucose- and VLDL-production. Hepatic VLDL is composed of dietary, body store and DNL derived FA. Decreasing insulin sensitivity increases the contribution of FA from hepatic-DNL in VLDL-triacylglycerols, and consequently saturated-FA and monounsaturated-FA (MUFA) in maternal serum lipids increase during pregnancy. Although other authors described changes in maternal serum and RBC essential-FA (EFA) after delivery, none went into detail about the changes in non-EFA and the mechanisms behind -and/or functions of- the observed changes.

Hypothesis

Postpartum FA-changes result from changing enzymatic activities that are influenced by the changing hormonal milieu after delivery and DHA-status.

Empirical data

We studied FA-profiles and FA-ratios (as indices for enzymatic activities) of maternal and infant RBC at delivery and after 3 months exclusive breastfeeding in three populations with increasing freshwater-fish intakes. DNL-, SCD- and FADS2-activities decreased after delivery. Elongation-6 (Elovl-6)- and FADS1-activities increased. The most pronounced postpartum changes for mothers were increases in 18:0, linoleic (LA), arachidonic acid (AA) and decreases in 16:0, 18:1ω9 and DHA; and for infants increases in 18:1ω9, 22:5ω3, LA and decreases in 16:0 and AA. Changes were in line with the literature.

Discussion

Postpartum increases in 18:0, and decreases in 16:0 and 18:1ω9, might derive from reduced insulin-promoted DNL-activity, with more reduced SCD- than Elovl-activity that leaves more 16:0 to be converted to 18:0 (Elovl-activity) than to MUFA (SCD-activity). Postpartum changes in ΣDNL, saturated-FA and MUFA related negatively to RBC-DHA. This concurs with suppression of both SCD- and Elovl-6 activities by DHA, through its influence on SREBP. Infant MUFA and LA increased at expense of their mothers. Sustained transport might be important for myelination (MUFA) and skin barrier development (LA). Maternal postpartum decreases in FADS2-, and apparent increases in FADS1-activity, together with increases in LA, AA, and 22:5ω3, but decrease in DHA, confirm that FADS2 is rate limiting in EFA-desaturation. Maternal LA and AA increases might be the result of rerouting from transplacental transfer to the incorporation into milk lipids and discontinued placental AA-utilization.

Implications

Perinatal changes in maternal and infant FA status may be strongly driven by changing insulin sensitivity and DHA status.  相似文献   
355.
Aims.Type 1 diabetes (T1D) is tied to an increased risk of cardiovascular morbidity and mortality. Dietary treatment would be an elective therapeutic strategy to fight this risk. However, it is not known what the best dietary approach is.We revisited the currently available literature on the nutritional treatment of T1D in the light of their potential comprehensive effects on the management of cardio-metabolic risk factors (body weight, fasting and postprandial glucose and lipid metabolism).Data synthesis.Nutritional research in T1D is mainly focused on blood glucose control, with most of the trials aiming at evaluating the acute effects of nutrients on postprandial glycemic response. The effects of the quantity and quality of nutrients and some specific foods on other metabolic risk factors have been explored mainly in cross-sectional analysis. Very few well-designed nutritional trials evaluated the best dietary approach to comprehensively manage cardiovascular risk by targeting along with blood glucose control, overweight, fasting and postprandial dyslipidemia. Therefore, the current best practice guidance for the dietary management of cardiovascular risk in T1D is generally based on evidence from patients with type 2 diabetes.ConclusionsWell-conducted nutritional trials specifically designed for T1D are needed to identify the best dietary treatment to fight cardiovascular risk in these patients.  相似文献   
356.
Background and aimsIncreased hepatocellular lipid content (HCL) is linked to insulin resistance, risk of type 2 diabetes and related complications. Conversely, a single-nucleotide polymorphism (TM6SF2EK; rs58542926) in the transmembrane 6 superfamily member 2-gene has been associated with nonalcoholic fatty liver disease (NAFLD), but lower cardiovascular risk. This case-control study tested the role of this polymorphism for tissue-specific insulin sensitivity during early course of diabetes.Methods and resultsMales with recent-onset type 2 diabetes with (TM6SF2EK: n = 16) or without (TM6SF2EE: n = 16) the heterozygous TM6SF2-polymorphism of similar age and body mass index, underwent Botnia-clamps with [6,6-2H2]glucose to measure whole-body-, hepatic- and adipose tissue-insulin sensitivity. HCL was assessed with 1H-magnetic-resonance-spectroscopy. A subset of both groups (n = 24) was re-evaluated after 5 years. Despite doubled HCL, TM6SF2EK had similar hepatic- and adipose tissue-insulin sensitivity and 27% higher whole-body-insulin sensitivity than TM6SF2EE. After 5 years, whole-body-insulin sensitivity, HCL were similar between groups, while adipose tissue-insulin sensitivity decreased by 87% and 55% within both groups and circulating triacylglycerol increased in TM6SF2EE only.ConclusionsThe TM6SF2-polymorphism rs58542926 dissociates HCL from insulin resistance in recent-onset type 2 diabetes, which is attenuated by disease duration. This suggests that diabetes-related metabolic alterations dominate over effects of the TM6SF2-polymorphism during early course of diabetes and NAFLD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号