首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
儿科学   2篇
基础医学   1篇
临床医学   1篇
内科学   18篇
特种医学   14篇
综合类   1篇
预防医学   5篇
药学   1篇
肿瘤学   9篇
  2022年   6篇
  2021年   8篇
  2019年   1篇
  2018年   2篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
11.
MOSkin detectors were studied to perform real-time in vivo dose measurements in high dose rate prostate brachytherapy. Measurements were performed inside an urethral catheter in a gel phantom simulating a real prostate implant. Measured and expected doses were compared and the discrepancy was found to be within 8.9% and 3.8% for single MOSkin and dual-MOSkin configurations, respectively. Results show that dual-MOSkin detectors can be profitably adopted in prostate brachytherapy treatments to perform real-time in vivo dosimetry inside the urethra.  相似文献   
12.
13.
In this work, we developed and tested a multi‐channel radio frequency (RF) transmission system with compact metal‐oxide semiconductor field effect transistor (MOSFET) amplifiers for parallel excitation in 7 T animal MRI scanner. The system is composed of a multi‐channel RF controller and four independent RF power amplifiers. Each power amplifier contains two amplification stages. The design was validated by simulation and bench test. The power gain for the amplifier is 18.7 dB at 300 MHz, demonstrating the sufficient amplification capability of the transmission system for small animal parallel excitation applications at 7 T. This compact RF power amplifier can be potentially used for on‐coil amplification in multichannel RF array system. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 45B: 191–200, 2015  相似文献   
14.
In this work, hydrogen-terminated diamond (H-diamond) metal-oxide-semiconductor field-effect-transistors (MOSFETs) on a heteroepitaxial diamond substrate with an Al2O3 dielectric and a passivation layer were characterized. The full-width at half maximum value of the diamond (004) X-ray rocking curve was 205.9 arcsec. The maximum output current density and transconductance of the MOSFET were 172 mA/mm and 10.4 mS/mm, respectively. The effect of a low-temperature annealing process on electrical properties was also investigated. After the annealing process in N2 atmosphere, the threshold voltage (Vth) and flat-band voltage (VFB) shifts to negative direction due to loss of negative charges. After annealing at 423 K for 3 min, the maximum value of hole field effective mobility (μeff) increases by 27% at VthVGS = 2 V. The results, which are not inferior to those based on homoepitaxial diamond, promote the application of heteroepitaxial diamond in the field of electronic devices.  相似文献   
15.
PURPOSE: To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. METHODS AND MATERIALS: A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. RESULTS: The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. CONCLUSIONS: The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.  相似文献   
16.
The variations in the degradation of electrical characteristics resulting from different device structures for trench-gate SiC metal-oxide-semiconductor field effect transistors (MOSFETs) are investigated in this work. Two types of the most advanced commercial trench products, which are the asymmetric trench SiC MOSFET and the double-trench SiC MOSFET, are chosen as the targeted devices. The discrepant degradation trends caused by the repetitive avalanche stress are monitored. For the double-trench device, the conduction characteristic improves while the gate-drain capacitance (Cgd) increases seriously. It is because positive charges are injected into the bottom gate oxide during the avalanche process, which are driven by the high oxide electronic field (Eox) and the high impact ionization rate (I.I.) there. Meanwhile, for the asymmetric trench SiC MOSFET, the I–V curve under the high gate bias condition and the Cgd remain relatively stable, while the trench bottom is well protected by the deep P+ well. However, it’s threshold voltage (Vth) decreases more obviously when compared with that of the double-trench device and the inclined channel suffers from more serious stress than the vertical channel. Positive charges are more easily injected into the inclined channel. The phenomena and the corresponding mechanisms are analyzed and proved by experiments and technology computer-aided design (TCAD) simulations.  相似文献   
17.
《Brachytherapy》2018,17(1):227-233
PurposeEstablishment of an end-to-end system for the brachytherapy (BT) dosimetric chain could be valuable in clinical quality assurance. Here, the development of such a system using MOSFET (metal oxide semiconductor field effect transistor) detectors and experience gained during 2 years of use are reported with focus on the performance of the MOSFET detectors.Methods and MaterialsA bolus phantom was constructed with two implants, mimicking prostate and head & neck treatments, using steel needles and plastic catheters to guide the 192Ir source and house the MOSFET detectors. The phantom was taken through the BT treatment chain from image acquisition to dose evaluation. During the 2-year evaluation-period, delivered doses were verified a total of 56 times using MOSFET detectors which had been calibrated in an external 60Co beam. An initial experimental investigation on beam quality differences between 192Ir and 60Co is reported.ResultsThe standard deviation in repeated MOSFET measurements was below 3% in the six measurement points with dose levels above 2 Gy. MOSFET measurements overestimated treatment planning system doses by 2–7%. Distance-dependent experimental beam quality correction factors derived in a phantom of similar size as that used for end-to-end tests applied on a time-resolved measurement improved the agreement.ConclusionsMOSFET detectors provide values stable over time and function well for use as detectors for end-to-end quality assurance purposes in 192Ir BT. Beam quality correction factors should address not only distance from source but also phantom dimensions.  相似文献   
18.
In this paper, a novel 4H-SiC split heterojunction gate double trench metal-oxide-semiconductor field-effect transistor (SHG-DTMOS) is proposed to improve switching speed and loss. The device modifies the split gate double trench MOSFET (SG-DTMOS) by changing the N+ polysilicon split gate to the P+ polysilicon split gate. It has two separate P+ shielding regions under the gate to use the P+ split polysilicon gate as a heterojunction body diode and prevent reverse leakage `current. The static and most dynamic characteristics of the SHG-DTMOS are almost like those of the SG-DTMOS. However, the reverse recovery charge is improved by 65.83% and 73.45%, and the switching loss is improved by 54.84% and 44.98%, respectively, compared with the conventional double trench MOSFET (Con-DTMOS) and SG-DTMOS owing to the heterojunction.  相似文献   
19.
MAX62X及其在超声波发生器中的应用   总被引:1,自引:0,他引:1  
针对功率MOSFET栅极输入电容大的特点,本文介绍了专为高速度的功率MOSFET而设计的集成驱动器(IC driver)MAX626/7/8的主要特性及典型应用电路,并给出了采用该芯片的超声波发生器电路。本发生器具有线路简单.工作稳定可靠.整机体积小、质量轻的特点。  相似文献   
20.
目的利用场效应晶体管对X射线的敏感性,探讨制作出符合临床需要、实用的X射线计量探测器的可行性。方法①确定合适的场效应晶体管工作参数,即确定工作电压VDS以及漏极电阻DR,并测量在X射线照射场效应晶体管时,漏极电阻DR上的电压降VDR,以确定场效应晶体管对X射线照射是否敏感。②任选市售不同型号的场效应晶体管若干,并在临床的标准条件下对这些场效应晶体管作X射线照射,通过测定VDR值,以确定场效应管对X射线照射反应的普遍性。③使用电离室(临床标准配置)对X射线的剂量作标定,并对处于相同X射线照射下场效应晶体管的VDR值作比对测量,以确定VDR值与X射线剂量之间的函数关系。④大剂量X射线照射试验用场效应晶体管,通过观察其对大剂量射线轰击的耐受性,以确定其作为传感器应当具有的可靠性。结果市售场效应晶体管对X射线照射的反应具有普遍性;其输出信号与X射线剂量之间具有很好的线性关系;试验用场效应管能够经受大剂量1000cGy的15MV高能X射线轰击。结论经过挑选的市售场效应晶体管完全能适用作临床上检测X射线的相对剂量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号