全文获取类型
收费全文 | 88338篇 |
免费 | 6685篇 |
国内免费 | 3936篇 |
专业分类
耳鼻咽喉 | 392篇 |
儿科学 | 1544篇 |
妇产科学 | 930篇 |
基础医学 | 14504篇 |
口腔科学 | 1781篇 |
临床医学 | 7268篇 |
内科学 | 15308篇 |
皮肤病学 | 1172篇 |
神经病学 | 8230篇 |
特种医学 | 1384篇 |
外国民族医学 | 15篇 |
外科学 | 5460篇 |
综合类 | 14822篇 |
现状与发展 | 22篇 |
预防医学 | 5043篇 |
眼科学 | 1056篇 |
药学 | 11229篇 |
25篇 | |
中国医学 | 2853篇 |
肿瘤学 | 5921篇 |
出版年
2024年 | 722篇 |
2023年 | 1219篇 |
2022年 | 2507篇 |
2021年 | 3291篇 |
2020年 | 2734篇 |
2019年 | 2235篇 |
2018年 | 2196篇 |
2017年 | 2499篇 |
2016年 | 2864篇 |
2015年 | 3240篇 |
2014年 | 5376篇 |
2013年 | 6039篇 |
2012年 | 5684篇 |
2011年 | 6338篇 |
2010年 | 5025篇 |
2009年 | 4936篇 |
2008年 | 5055篇 |
2007年 | 4891篇 |
2006年 | 4363篇 |
2005年 | 4073篇 |
2004年 | 3380篇 |
2003年 | 2867篇 |
2002年 | 2198篇 |
2001年 | 1883篇 |
2000年 | 1623篇 |
1999年 | 1391篇 |
1998年 | 1306篇 |
1997年 | 1131篇 |
1996年 | 964篇 |
1995年 | 774篇 |
1994年 | 745篇 |
1993年 | 625篇 |
1992年 | 534篇 |
1991年 | 503篇 |
1990年 | 420篇 |
1989年 | 332篇 |
1988年 | 321篇 |
1987年 | 299篇 |
1986年 | 264篇 |
1985年 | 374篇 |
1984年 | 330篇 |
1983年 | 219篇 |
1982年 | 254篇 |
1981年 | 197篇 |
1980年 | 171篇 |
1979年 | 115篇 |
1978年 | 95篇 |
1977年 | 83篇 |
1976年 | 78篇 |
1975年 | 58篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
132.
133.
Guoliang ZHANG Jie ZHANG Xinyu WANG Wenqin YANG Zhihui SUN Chaurasia Nitesh KUMAR Hong GUAN Jian GUAN 《Journal of applied oral science : revista FOB》2014,22(4):282-286
Objective
To study the effect of Lactobacillus sp. A-2 metabolites on viability of CAL-27 cells and apoptosis in CAL-27 cells.Methods
Lactobacillus sp. A-2 metabolites 1 and 2 (LM1 and LM2) were obtained by culturing Lactobacillus sp. A-2 in reconstituted whey medium and whey-inulin medium; the cultured CAL-27 cells were treated with different concentrations of LM1 and LM2 (0, 3, 6, 12, 24, 48 mg/mL) and assayed by methyl thiazolyltetrazolium (MTT) method; morphological changes of apoptotic cell were observed under fluorescence microscopy by acridine orange (Ao) fluorescent staining; flow cytometry method (FCM) and agarose gel electrophoresis were used to detect the apoptosis of CAL-27 cells treated LM1 and LM2.Results
The different concentrations of LM1 and LM2 could restrain the growth of CAL-27 cells, and in a dose-dependent manner; the apoptosis of CAL-27 cells was obviously induced and was time-dependent.Conclusions
Viability of CAL-27 cells was inhibited by Lactobacillus sp. A-2 metabolites; Lactobacillus sp. A-2 metabolites could induce CAL-27 cells apoptosis; study on the bioactive compounds in the Lactobacillus sp. A-2 metabolites and their molecular mechanism is in progress. 相似文献134.
135.
Pascal Egloff Matthias Hillenbrand Christoph Klenk Alexander Batyuk Philipp Heine Stefanie Balada Karola M. Schlinkmann Daniel J. Scott Marco Schütz Andreas Plückthun 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(6):E655-E662
Crystallography has advanced our understanding of G protein–coupled receptors, but low expression levels and instability in solution have limited structural insights to very few selected members of this large protein family. Using neurotensin receptor 1 (NTR1) as a proof of principle, we show that two directed evolution technologies that we recently developed have the potential to overcome these problems. We purified three neurotensin-bound NTR1 variants from Escherichia coli and determined their X-ray structures at up to 2.75 Å resolution using vapor diffusion crystallization experiments. A crystallized construct was pharmacologically characterized and exhibited ligand-dependent signaling, internalization, and wild-type–like agonist and antagonist affinities. Our structures are fully consistent with all biochemically defined ligand-contacting residues, and they represent an inactive NTR1 state at the cytosolic side. They exhibit significant differences to a previously determined NTR1 structure (Protein Data Bank ID code 4GRV) in the ligand-binding pocket and by the presence of the amphipathic helix 8. A comparison of helix 8 stability determinants between NTR1 and other crystallized G protein–coupled receptors suggests that the occupancy of the canonical position of the amphipathic helix is reduced to various extents in many receptors, and we have elucidated the sequence determinants for a stable helix 8. Our analysis also provides a structural rationale for the long-known effects of C-terminal palmitoylation reactions on G protein–coupled receptor signaling, receptor maturation, and desensitization.Neurotensin is a 13-amino-acid peptide, which plays important roles in the pathogenesis of Parkinson’s disease, schizophrenia, antinociception, and hypothermia and in lung cancer progression (1–4). It is expressed throughout the central nervous system and in the gut, where it binds to at least three different neurotensin receptors (NTRs). NTR1 and NTR2 are class A G protein–coupled receptors (GPCRs) (5, 6), whereas NTR3 belongs to the sortilin family. Most of the effects of neurotensin are mediated through NTR1, where the peptide acts as an agonist, leading to GDP/GTP exchange within heterotrimeric G proteins and subsequently to the activation of phospholipase C and adenylyl cyclase, which produce second messengers in the cytosol (5, 7). Activated NTR1 is rapidly phosphorylated and internalizes by a β-arrestin– and clathrin-mediated process (8), which is crucial for desensitizing the receptor (9). Several lines of evidence suggest that internalization is also linked to G protein–independent NTR1 signaling (10, 11). To improve our mechanistic understanding of NTR1 and to gain additional insight into GPCR features such as helix 8 (H8), we were interested in obtaining a structure of this receptor in a physiologically relevant state.To date, by far the most successful strategy for GPCR structure determination requires the replacement of the intracellular loop 3 by a fusion protein, as the intracellular domain is otherwise too small to provide crystal contacts. The fusion protein approach has provided a wealth of valuable structural data on GPCRs, but as it renders the crystallized constructs signaling-inactive, the most important functionality—the activation of G proteins—cannot be confirmed for these structures. This leads inevitably to a degree of uncertainty regarding the physiological relevance of intracellular structural aspects, and it also impedes the elucidation of signaling mechanisms, as functional assays and structure determination cannot be performed with the same GPCR constructs.Crystallization in the absence of fusion proteins was so far mainly possible for rhodopsin (12), the A2A adenosine receptor (A2AR) (13), and the β1-adrenergic receptor (14). Together, they share a high stability, which is either given naturally (rhodopsin) or it is due to stabilizing mutations. High stability appeared to be crucial for crystallographic success, as it allowed the application of harsh short-chain detergents. These tend to form small micelles, which may explain why crystal contact formation can occur under these conditions despite the small extra- and intracellular domains of class A GPCRs.Besides the stability requirement and/or the necessity of fusion proteins, structural studies of GPCRs have also been complicated by the need of eukaryotic expression systems [e.g., Spodoptera frugiperda (Sf9) insect cells], as prokaryotes exhibit generally low functional expression levels of wild-type GPCRs. However, prokaryotes such as Escherichia coli offer several advantages compared with insect cells, including quick genetic modification strategies, growth to high cell densities, fast doubling times, inexpensive media, absence of glycosylation, and robust handling. Furthermore, E. coli is well suited for producing fully isotope-labeled proteins—a crucial requirement for many NMR studies, which are limited to date.To exploit these advantages, we recently developed a directed evolution method for high functional GPCR expression levels in E. coli (15). In contrast to screening a few hundred mutants one by one, this strategy allows the simultaneous, competitive testing of >108 different protein variants for highest prokaryotic expression and functionality. Briefly, diverse libraries of NTR1 variants were either obtained synthetically (16, 17) or by error-prone PCR on the wild-type sequence (15). The libraries were ligated to a plasmid encoding an inducible promoter, which was subsequently used to transform E. coli. Selection pressure for high functional expression levels was applied by incubating the induced cells with fluorescently labeled neurotensin, which allowed enrichment of the best expressing cells by fluorescence-activated cell sorting (FACS). The outlined procedure was performed in cycles, leading to a gradual adaptation of the NTR1 population toward high functional expression levels, and additionally, it gave rise to an increase in thermostability for certain variants.In a second technology, termed CHESS (cellular high-throughput encapsulation, solubilization and screening), we adapted this concept to directly evolve NTR1 variants for high thermostability in short-chain detergent micelles—a property that is not only beneficial for structural studies but also for in vitro drug screening (18). The crucial development of CHESS was to surround, simultaneously, every E. coli cell by a semipermeable polysaccharide capsule. This allows us to solubilize the receptor mutants with harsh short-chain detergents, each mutant inside its own encapsulated cell, all at once and in the same test tube. Both the solubilized receptors and their encoding plasmids are maintained within the same capsules. Long-term incubation under these conditions followed by labeling of the encapsulated solubilized receptors with fluorescent neurotensin and rounds of FACS enrichment ensured a strong selection pressure and a gradual adaption of the NTR1 population toward high stability in harsh short-chain detergents (18).In this work, we present the crystal structures of three evolved NTR1 variants, which were either obtained by evolving high functional expression levels in E. coli or by directed evolution for stability in detergent micelles. In contrast to the majority of crystallized GPCRs, our NTR1 variants are devoid of bulky modifications at the cytoplasmic face and can thus remain signaling-active, which allows us to gain unique insights into the structure–function relationship of NTR1. 相似文献
136.
Tamara Basta Hsin-Jui Wu Mary K. Morphew Jonas Lee Nilanjan Ghosh Jeffrey Lai John M. Heumann Keeshia Wang Y. C. Lee Douglas C. Rees Michael H. B. Stowell 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(2):670-674
We demonstrate that membrane proteins and phospholipids can self-assemble into polyhedral arrangements suitable for structural analysis. Using the Escherichia coli mechanosensitive channel of small conductance (MscS) as a model protein, we prepared membrane protein polyhedral nanoparticles (MPPNs) with uniform radii of ∼20 nm. Electron cryotomographic analysis established that these MPPNs contain 24 MscS heptamers related by octahedral symmetry. Subsequent single-particle electron cryomicroscopy yielded a reconstruction at ∼1-nm resolution, revealing a conformation closely resembling the nonconducting state. The generality of this approach has been addressed by the successful preparation of MPPNs for two unrelated proteins, the mechanosensitive channel of large conductance and the connexon Cx26, using a recently devised microfluidics-based free interface diffusion system. MPPNs provide not only a starting point for the structural analysis of membrane proteins in a phospholipid environment, but their closed surfaces should facilitate studies in the presence of physiological transmembrane gradients, in addition to potential applications as drug delivery carriers or as templates for inorganic nanoparticle formation.The functions of many membrane proteins are intimately coupled to the generation, utilization, and/or sensing of transmembrane gradients (1). Despite advances in the structure determination of membrane proteins (2), the high-resolution structural analysis of membrane proteins in a biological membrane is uncommon and in the presence of a functionally relevant gradient remains an as-yet unrealized experimental challenge. This stems from the fact that the primary 2D- and 3D ordered specimens used in structural studies of membrane proteins by X-ray crystallography and electron microscopy lack closed membrane surfaces, thus making it impossible to establish physiologically relevant transmembrane gradients.As an alternative, we have been developing methodologies for the self-assembly of lipids and membrane proteins into closed polyhedral structures that can potentially support transmembrane gradients for structural and functional studies. The possibility of generating polyhedral arrangements of membrane proteins in proteoliposomes was motivated by the existence of polyhedral capsids of membrane-enveloped viruses (3, 4), the ability of surfactant mixtures to self-assemble into polyhedral structures (5, 6), and the formation of proteoliposomes from native membranes containing bacteriorhodopsin (7, 8) and light-harvesting complex II (LHCII) (9). Significantly, the high-resolution structure of LHCII was determined from crystals of icosahedral proteoliposomes composed of protein subunits in chloroplast lipids (10). Whereas detergent solubilized membrane proteins and lipid mixtures can self-assemble to form 2D-ordered crystalline sheets or helical tubes favorable for structure determination by electron microscopy (11–14), simple polyhedral ordered assemblies have only been described to form from select native membranes (7–9). To expand the repertoire of membrane protein structural methods, we have prepared membrane protein polyhedral nanoparticles (MPPNs) of the bacterial mechanosensitive channel of small conductance (MscS) (15, 16) from detergent solubilized protein and phospholipids, and demonstrated that they are amenable to structural analysis using electron microscopy.Conditions for generating MPPNs were anticipated to resemble those for other types of 2D-ordered bilayer arrangements of membrane proteins, particularly 2D crystals, in that membrane protein is mixed with a particular phospholipid at a defined ratio, followed by dialysis to remove the solubilizing detergent (17). The main distinction is that because MPPNs are polyhedral, conditions are sought that will stabilize highly curved surfaces of polyhedra rather than the planar (flat) specimens desired for 2D crystals. We used the Escherichia coli MscS as a model system. MscS is an intrinsically stretch-activated channel identified by Booth and coworkers (15) that confers resistance to osmotic downshock in E. coli. MscS forms a heptameric channel with 21 transmembrane helices (3 from each subunit) and a large cytoplasmic domain with overall dimensions of ∼8 × ∼12 nm parallel and perpendicular to the membrane plane; structures have been reported in both nonconducting (16, 18) and open-state conformations (19). Different phospholipids were added to purified the E. coli MscS solubilized in the detergent Fos-Choline 14 and the system was allowed to reach equilibrium by dialysis at different temperatures. To gain insight into the biophysical parameters that govern MPPN formation, we investigated the role of lipid head group, alkyl chain length, pH, and protein construct. Table S1 shows the observed influence of these various factors on our ability to form uniform MPPNs (as opposed to disordered aggregates or polydisperse proteoliposomes). The optimal conditions for MPPN formation used 1,2-dimyristoyl-sn-glycero-3-phosphocholine [added to ∼1:0.1 (wt/wt) protein:phospholipid] at pH 7 with the His-tagged MscS that is anticipated to be positively charged under these conditions. The biophysical properties of the protein are important as the best results were achieved using a His-tagged construct and the presence of a FLAG tag at the C terminus of MscS interfered with MPPN formation, even though the tag is ∼10 nm from the membrane-spanning region of MscS.To monitor MPPN formation, dynamic light scattering (DLS) was used. Under optimal conditions, we observed (Fig. 1A) the complete transition of solubilized MscS particles with a narrow distribution centered around a mean radii of 4.5 nm to MPPNs with a narrow distribution centered around a mean radii of 20 nm. We further characterized these particles using negative-stain electron microscopy. Fig. 1B is a field view negative-stain electron micrograph of a solution of detergent-solubilized MscS and lipid before initiation of the self-assembly process. Fig. 1C is a field view negative-stain electron micrograph of the same sample after the self-assembly process. We observed the incorporation of MscS into highly uniform polyhedra with mean radii of ∼20 nm (90%) and ∼17 nm (10%) by negative-stain electron microscopy. To gain more insight into the biophysical properties of these particles, we performed protein and phosphorus analysis on multiple samples to determine the lipid:protein ratio (Fig. S1). The observed lipid:protein ratio of the MscS MPPNs was 11 ± 1 (mole lipid:mole protein subunit) and consistent with a single layer of lipids forming a bilayer surrounding each protein. This ratio is comparable to the observed lipid to protein ratio found in 2D crystals of membrane proteins such as bacteriorhodopsin (lipid:protein ratio of 10; refs. 20 and 21) and aquaporin (lipid:protein ratio of 9; ref. 22).Open in a separate windowFig. 1.Preparation of MscS MPPNs. (A) DLS analysis of particles before dialysis and after completion of dialysis when MPPNs are formed. The observed radius of MscS alone was 4.5 nm and the particle radius at the end of dialysis was observed to be 20 nm. In both cases 99% of the scattering mass was observed in the distributions centered at 4.5 nm and 20 nm, respectively. (B) Negative-stain electron microscopy analysis of MscS before dialysis. Individual MscS proteins can be observed as small doughnut-shaped particles. (C) Negative-stain electron microscopy analysis of MPPNs following dialysis of the sample in B. MPPNs can be clearly observed and appear as uniform assemblies of individual MscS molecules. (Scale bars, 100 nm.)To further elucidate the structural nature of these particles and to unambiguously determine the symmetry, we performed electron cryotomography with image reconstruction using IMOD (23) combined with Particle Estimation for Electron Tomography (PEET) program (ref. 24 and SI Materials and Methods). In principle, electron tomography provides a complete 3D map of the particles and would allow us to unambiguously determine the MPPN symmetry. However, the alignment process was highly biased by the missing wedge phenomenon (24) due to poor signal:noise and resulted in an incomplete map (Fig. 2A). To overcome this alignment bias, we assigned random initial orientation values to all particles and constrained possible angular shifts to less than 30° to achieve a more uniform distribution of orientations (Fig. S2). This strategy resulted in a much improved density map (Fig. 2B) that revealed individual molecules with a size and shape that are in good agreement to the known molecular structure of MscS (Fig. 2C and Fig. S3). Building on the analysis of Haselwandter and Phillips (25), a systematic analysis was conducted (Table S2) of the symmetry relationships between MscSs in MPPNs that identified the arrangement corresponding to the snub cuboctahedron (dextro), an Archimedean solid. The snub cuboctahedron has cubic (octahedral) symmetry which, as recognized by Crick and Watson (26), provides an efficient way to pack identical particles in a closed, convex shell. In this particular arrangement, 24 MscS molecules are related by the 432-point group symmetry axes that pass through the faces, but not the vertices, of the snub cuboctahedron. Because the MscS molecules are positioned on the vertices of this chiral polyhedron, they occupy general positions that permit the ordered packing of the heptamers of a biomacromolecule (or indeed any type of particle). This is an important observation as it means that the individual MscS molecules with sevenfold symmetry are capable of packing into a symmetric assembly that is amenable to averaging. Whereas 24 objects can be arranged with identical environments in a snub cuboctahedron, certain integer multiples of this number can also be accommodated using the principles of quasiequivalence (27, 28) to form larger closed shells.Open in a separate windowFig. 2.Cryotomography of MscS MPPNs. (A) The PEET isosurface derived from 162 individual particles selected from eight single-tilt tomograms. The strong bias due to the missing wedge is observed along the lower part of the surface, but individual MscS heptamers are still discernible in the image. (B) The corresponding PEET isosurface, following introduction of randomized starting Euler angles to minimize missing-wedge bias. (C) The use of randomized starting Euler angles results in a much-improved map with apparent octahedral (432) symmetry that could be fit with 24 molecules of the MscS crystal structure. Isosurface renderings of the volume averages were generated using Chimera (31).Using the symmetry derived by electron cryotomography, we proceeded to collect high-resolution single-particle electron cryomicroscopy data. Samples prepared identically for cryotomography were imaged under low-dose conditions and a total of 4,564 particles were processed using the Electron Micrograph Analysis 2 (EMAN2) software package (SI Materials and Methods) (29). The final map had a resolution of 9 Å by Fourier shell correlation (Fig. S4) and allowed us to model the inner and outer helices of the transmembrane pore (Fig. 3). The arrangement of the helices more closely resembles the nonconducting conformation (16, 18) than the open-state structure (19), although some differences in the positioning of the outer helices relative to the nonconducting structure are indicated in sections 2 and 3 of Fig. 3. These results demonstrate that membrane proteins are capable of assembling into MPPNs that are amenable to high-resolution structure analysis by single-particle electron cryomicroscopy. Higher resolution data will be required, however, to detail the precise conformational differences between MscS in the phospholipid environment of MPPNs compared with those in the detergent-solubilized state used in the X-ray crystal structure analyses.Open in a separate windowFig. 3.Single-particle image analysis reconstructed from 4,564 particles processed with EMAN2 and subsequently the density surrounding a single MscS heptamer was extracted and sevenfold averaged as described in SI Materials and Methods. (Left) A cross-section through the electron density revealing the translocation pathway and cytoplasmic vestibule, and showing the overall fit of the closed structure of MscS (red ribbons) fit to the map (cyan). (Right) Stereoviews of cross-sections in the density map normal to the sevenfold axis at sections 1, 2, and 3. The closed-structure coordinates (red ribbons) of MscS were fit to the map using rigid body refinement in Chimera (31) showing the position of the transmembrane helices.In these promising initial studies we used traditional dialysis methods to screen conditions for MPPN formation. These methods are time consuming and require substantial quantities of a sample. To more efficiently screen conditions for MPPN formation with a variety of membrane proteins, we designed and fabricated a free interface diffusion microfluidic device (30) (Fig. 4A and Fig. S5) This device greatly simplifies the screening process and minimizes the amount of sample required for determining suitable conditions for MPPN formation. Using this device, we were able to produce MPPNs from MscS but more importantly from several other proteins that had previously failed to produce MPPNs using traditional dialysis. Fig. 4 B and C shows the results of using this device for the mechanosensitive channel of large conductance (MscL) and the connexon Cx26, respectively, where polyhedra were only observed in the presence of the target protein. Intriguingly, several different particles sizes could be observed for both MscL and Cx26 and we hypothesize that the variable-sized polyhedra may correspond to different packing arrangements similar to triangulation numbers observed in viral polyhedral assemblies. This microfluidic device will provide rapid screening of conditions for the formation of MPPNs and it is hoped will expedite membrane protein structural analysis in native lipid environments.Open in a separate windowFig. 4.Preparation of MPPNs using a microfluidics-based free interface diffusion system. (A) Schematic illustration of the device used for lipid–protein nanoparticle formation. From left to right, molecules in the center flow diffuse into the outer flow by the concentration gradient, with small molecules (larger diffusion coefficient) moving more quickly than larger molecules. Specifically, monomer detergents are removed through interfacial diffusion, whereas larger membrane proteins remain in the center flow, forming nanoparticles. Both the ratio of input:buffer and the flow rate influence particle formation. (B). Negative-stain electron microscopy images of MPPNs of MscL and (C) Cx26 formed using the microfluidic device from A. (Scale bar, 100 nm.) Insets show 2.5× magnification of a select region of interest.The self-assembly of membrane proteins into polyhedral nanoparticles demonstrates a potentially powerful method for studying the structure and function of membrane proteins in a lipid environment. MPPNs represent a novel form of lipid–protein assemblies which lie between single particles and large crystalline sheets or tubes. We have demonstrated that conditions favorable for MPPN formation can be identified and have elucidated the structure, symmetry, and potential application to membrane protein structure analysis. In addition we have designed and fabricated microfluidic devices for high-throughput screening of conditions for MPPN formation. MPPNs may allow a variety of perturbations to be achieved such as pH, voltage, osmotic, concentration gradients, etc. that cannot be achieved with other membrane protein assemblies and will potentially allow us to activate various types of gated channels and receptors so that active conformational states can be structurally investigated. The potential of such materials for targeted drug delivery with precisely controlled release mechanisms offers an intriguing avenue for future biomedical applications. 相似文献
137.
Ruth Kellner Hagen Hofmann Alessandro Barducci Bengt Wunderlich Daniel Nettels Benjamin Schuler 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(37):13355-13360
Molecular chaperones are an essential part of the machinery that avoids protein aggregation and misfolding in vivo. However, understanding the molecular basis of how chaperones prevent such undesirable interactions requires the conformational changes within substrate proteins to be probed during chaperone action. Here we use single-molecule fluorescence spectroscopy to investigate how the DnaJ–DnaK chaperone system alters the conformational distribution of the denatured substrate protein rhodanese. We find that in a first step the ATP-independent binding of DnaJ to denatured rhodanese results in a compact denatured ensemble of the substrate protein. The following ATP-dependent binding of multiple DnaK molecules, however, leads to a surprisingly large expansion of denatured rhodanese. Molecular simulations indicate that hard-core repulsion between the multiple DnaK molecules provides the underlying mechanism for disrupting even strong interactions within the substrate protein and preparing it for processing by downstream chaperone systems.Maintaining protein homeostasis in vivo requires a tight regulation of protein folding to prevent misfolding and aggregation. Molecular chaperones have evolved as an essential part of the cellular machinery that facilitates such processes in the complex and crowded environment of a living cell (1, 2). To assist protein folding, many chaperones proceed through complex conformational cycles in an ATP-dependent manner (3–5). For several chaperone systems, these cycles have been investigated in great detail by experiment and simulation (6–8). A remarkable example are the heat shock protein (Hsp) 70 chaperones, which are essential in prokaryotes and eukaryotes and are involved in co-translational folding, refolding of misfolded and aggregated proteins, protein translocation, and protein degradation (9). The Hsp70 chaperone DnaK from Escherichia coli together with its co-chaperone DnaJ and the nucleotide exchange factor GrpE form an ATP-driven catalytic reaction cycle (7) (Fig. 1A). Many denatured or misfolded substrate proteins are first captured by DnaJ and subsequently transferred to the DnaK–ATP complex, with DnaK in an open conformation. Substrate and DnaJ synergistically trigger DnaK’s ATPase activity, which leads to locking of the substrate in the DnaK–ADP complex, with DnaK in the closed conformation. Driven by the following GrpE-catalyzed ADP–ATP exchange, the DnaK–substrate complex dissociates (10). Since this ATP-driven cycle can even solubilize protein aggregates (11, 12), substantial forces must be transduced to the substrate protein (13–15). However, as for other chaperone systems (16), surprisingly little is known about how these forces and the resulting constraints of the underlying free energy surfaces affect the conformations of the denatured or misfolded substrate proteins. To better understand this important link between chaperone action and function, we probed the conformation of a substrate protein along the different stages of the chaperone cycle of DnaK with single-molecule Förster resonance energy transfer (smFRET), correlation spectroscopy, and microfluidic mixing.Open in a separate windowFig. 1.DnaK expands the denatured substrate protein. (A) Illustration of the DnaK–ATPase cycle. (B) Surface representation of rhodanese (PDB ID code 1RHS) with the subdomains indicated in different gray levels and the label positions of fluorescent dyes for single-molecule FRET measurements shown schematically. (C) FRET efficiency histograms of native rhodanese (gray) and denatured rhodanese under native conditions transiently populated in the microfluidic mixer (colored, measured 125 ms after dilution of rhodanese into native conditions). (D) FRET efficiency histograms of DnaJ–rhodanese complexes (0.5 µM DnaJ). (E) FRET efficiency histograms of DnaK–rhodanese complexes (0.5 µM DnaJ, 10 µM DnaK, and 1 mM ATP; DnaK and DnaJ were added simultaneously to rhodanese). Black lines indicate the DnaK–rhodanese complex population resulting from a fit that takes into account the residual population of refolded and DnaJ-bound rhodanese. The vertical lines in C–E indicate the positions of the FRET efficiency peaks of the native population of the respective rhodanese variants. The small populations at zero transfer efficiency in D (note the axis scaling and the small amplitudes of this population compared with E) originate from incomplete elimination of molecules with inactive acceptor fluorophores by pulsed interleaved excitation. 相似文献
138.
Vijay S. Reddy Glen R. Nemerow 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(32):11715-11720
Adenovirus cement proteins play crucial roles in virion assembly, disassembly, cell entry, and infection. Based on a refined crystal structure of the adenovirus virion at 3.8-Å resolution, we have determined the structures of all of the cement proteins (IIIa, VI, VIII, and IX) and their organization in two distinct layers. We have significantly revised the recent cryoelectron microscopy models for proteins IIIa and IX and show that both are located on the capsid exterior. Together, the cement proteins exclusively stabilize the hexon shell, thus rendering penton vertices the weakest links of the adenovirus capsid. We describe, for the first time to our knowledge, the structure of protein VI, a key membrane-lytic molecule, and unveil its associations with VIII and core protein V, which together glue peripentonal hexons beneath the vertex region and connect them to the rest of the capsid on the interior. Following virion maturation, the cleaved N-terminal propeptide of VI is observed, reaching deep into the peripentonal hexon cavity, detached from the membrane-lytic domain, so that the latter can be released. Our results thus provide the molecular basis for the requirement of maturation cleavage of protein VI. This process is essential for untethering and release of the membrane-lytic region, which is known to mediate endosome rupture and delivery of partially disassembled virions into the host cell cytoplasm.Human adenoviruses (HAdVs) are large (∼150 nm in diameter, 150-MDa) nonenveloped double-stranded DNA (dsDNA) viruses that cause respiratory, ocular, and enteric diseases (1). Although these diseases are self-limiting in immunocompetent individuals, they cause significant morbidity in AIDS, cancer, and organ transplant patients with compromised immune systems (2–4). Because of their broad cell tropism and ease of genome manipulation, replication-deficient or conditionally replicating HAdVs are also being evaluated in the clinic as potential vaccine and gene therapy vectors (5).The capsid shell of an adenovirus (Ad) comprises multiple copies of three major capsid proteins (MCPs; hexon, penton base, and fiber) and four minor/cement proteins (IIIa, VI, VIII, and IX) that are organized with pseudo-T = 25 icosahedral symmetry (Fig. 1 A and B). In addition, six other proteins (V, VII, μ, IVa2, terminal protein, and adenovirus protease) are encapsidated along with the 36-kb dsDNA genome inside the capsid (Fig. 1A). The crystal structures of all three MCPs are known, and so is their organization in the capsid from prior X-ray crystallography (6–8) and cryoelectron microscopy (cryo-EM) analyses (9, 10). Recently, high-resolution structures of recombinant HAdV5 vectors have been determined using cryo-EM (11) and X-ray methods (12) that revealed the structures and organization of some of the cement proteins. Both studies agree closely on the organization of the MCPs and confirm the earlier cryo-EM observations (9, 10, 13), but neither provided significant information on the structure and location of protein VI, which serves key roles in the virus life cycle. Of note, however, the two studies differ significantly in their assignments of the cement proteins IIIa and IX. Recent cryo-EM studies reported that only protein IX molecules form “triskelion” as well as “four-helix bundle” (4-HLXB) structures and mediate the network of interactions between hexon subunits on the capsid exterior (11, 14, 15). They also suggested that the densities ascribed to α-helices beneath the vertex region belong to protein IIIa. However, based on our X-ray crystallographic data and considering the principles of quasi-equivalence (16), we earlier suggested that although the IX molecules form triskelion structures, it is rather unlikely that the C termini of IX would form 4-HLXB structures (12). Instead, we proposed that this 4-HLXB is most likely derived from a subdomain of IIIa (12).Open in a separate windowFig. 1.Structure and organization of human adenovirus. (A) A schematic illustration of the organization of capsid and core proteins in human adenovirus. The locations of various proteins are represented by different-colored symbols and the corresponding names are shown (Right). The indicated locations of the core proteins are approximate. Shown in blue-colored lettering are the proteins whose structures have been identified in this study. (B) Overall organization of hexon and penton base subunits exhibiting pseudo-T = 25 icosahedral symmetry. Structurally unique hexons (1–4) are color-coded in light blue, pink, green, and khaki, respectively. Penton vertices are shown in magenta. Outer cement proteins IIIa and IX are shown in purple and blue, respectively. Fiber molecules associated with the penton base are disordered. The outline of the triangular icosahedral facet is shown as a gray triangle, whereas the border of the GON hexons is indicated by yellow-colored rope. (C) An exterior view of the triangular icosahedral facet that comprises 12 hexons along with penton base vertices shown in magenta. Color representations are the same as in B. (D) An interior view of the facet in C, with three minor proteins, V (green), VI (red), and VIII (orange). It is noteworthy that a copy of V, VI, and VIII forms a ternary complex beneath the vertices, whereas VIII (orange) molecules are arranged as staples along the border (yellow-colored rope) of the GON hexons.Here we report a revised interpretation, a paradigm shift, of the structures and locations of all of the cement proteins based on the refined crystal structure of Ad5F35 (HAdV5 vector encoding the type 35 fiber) that includes detailed models for the ordered regions of all four cement proteins (IIIa, VI, VIII, and IX). Additionally, we identified a segment of core protein V, which associates closely with protein VI. The 4-HLXB structure on the capsid exterior is a subdomain of IIIa (amino acids 101–355) that mediates interactions between group-of-nine (GON) (17) hexons (Fig. 1 C and D). The backbone path of each IX molecule is reversed from what was assigned by the cryo-EM studies (11, 14). Proteins V, VI, and VIII form a ternary complex that stabilizes the adjacent peripentonal hexons (PPHs) underneath each of the 12 vertex regions (Fig. 1D). This complex was incorrectly assigned to protein IIIa in cryo-EM studies (11, 14). Following virion maturation, the cleaved propeptide(s) of VI (pVIn; amino acids 1–33) is observed in the inner cavities of the PPHs, in agreement with recent interpretations from hydrogen–deuterium exchange mass spectrometry studies (18). 相似文献
139.
Garud Iyengar Madan Rao 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(34):12402-12407
Signaling receptors on the cell surface are mobile and have evolved to efficiently sense and process mechanical or chemical information. We pose the problem of identifying the optimal strategy for placing a collection of distributed and mobile sensors to faithfully estimate a signal that varies in space and time. The optimal strategy has to balance two opposing objectives: the need to locally assemble sensors to reduce estimation noise and the need to spread them to reduce spatial error. This results in a phase transition in the space of strategies as a function of sensor density and efficiency. We show that these optimal strategies have been arrived at multiple times in diverse cell biology contexts, including the stationary lattice architecture of receptors on the bacterial cell surface and the active clustering of cell-surface signaling receptors in metazoan cells.The molecular characteristics of signaling receptors and their spatiotemporal organization have evolved to optimize different facets of information processing at the cell surface. A canonical information-processing problem involves designing strategies for a collection of distributed, noisy, mobile sensors to faithfully estimate a signal or function that varies in space and time (1). This problem appears naturally in many contexts, biological and nonbiological: (i) chemoattractant protein sensors on the bacteria cell surface (2, 3); (ii) galectin-glycoprotein assemblies designed for effective immune response on the surface of metazoan cells (4, 5); (iii) ligand-activated signaling protein receptors on the surface of eukaryotic cells (6–10); (iv) coclustering of integrin receptors to faithfully read and discriminate the rigidity and chemistry of a substrate (11); (v) clustering of e-cadherin receptors for effective adherence at cell–cell junctions (12); and even (vi) radio frequency (RF) sensor networks monitoring the environment or mobile targets (13). In the signal-processing community, this problem is known as data fusion or more generally information fusion (14, 15); however typical applications do not consider mobile sensors.In this paper we show how biology has, on multiple occasions, arrived at a solution to this optimization problem. The optimal solution needs to balance two opposing objectives, the need to locally assemble sensors to reduce estimation noise and the need to spread them out for broader spatial coverage. We show that in the space of strategies, this leads to a phase transition as a function of sensor density, sensor characteristics, and function properties. At very low sensor density, the optimal design corresponds to freely diffusing sensors. For sensor density above a threshold, there are two different optimal solutions as a function of a dimensionless parameter constructed from the sensor advection velocity and the correlation length and time of the incident signal. One optimal solution is that the sensors are static and located on a regular lattice grid. This is the strategy used in bacteria, such as Escherichia coli, to organize their chemoattractant receptors in a regular lattice array (3, 16), and in metazoan cells, where galectin-glycoproteins are organized in a lattice on the cell surface to effect an optimal immune response (4, 5). To realize this strategy, the cell needs to provide a rigid cortical scaffold that holds the receptors in place. Another optimal solution is to make the receptors mobile in such a way that a fraction of them form multiparticle nanoclusters, which then break up and reform randomly, the rest being uniformly distributed. Recent studies on the steady-state distribution of several cell-surface proteins reveal a stereotypical distribution of a fixed fraction of monomers and dynamic nanoclusters (6–9), and our information theoretic perspective could provide a general explanation for this. To realize this dynamic strategy, the cell surface needed to be relieved of the constraints imposed by the rigid scaffold and to be more regulatable. This strategy change needed the innovation of motor proteins and dynamic actin filaments, a regulated actomyosin machinery fueled by ATP, and a coupling of components of the cell surface to this cortical dynamic actin (17). 相似文献
140.
目的:探讨S100蛋白检测在脑梗死(CI)中的作用价值。方法分析我院自2012年1月~2013年4月收治的76例CI患者,检测S100蛋白在CI患者发病后第3、7、14天时的水平,以及与神经功能缺损评分、脑梗死病灶面积大小的关系。同时选取我院同期行健康体检患者56例进行对照分析。结果(1)CI组与对照组比较,在术后3d与7d时,S100蛋白水平比较,P<0.01,P<0.05。(2)神经功能缺损评分中型、重型组与轻型组S100蛋白水平比较,P<0.05,P<0.01。(3)梗死面积中、大组与小梗死面积组比较,P<0.05, P<0.01。结论 S100蛋白在CI发病早期为高表达,同时其高表达神经功能缺损严重程度及梗死面积增大有密切关系,表明S100蛋白与CI的病理、生理的过程有一定的相关性。 相似文献