首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   83篇
  国内免费   54篇
基础医学   42篇
临床医学   19篇
内科学   16篇
皮肤病学   1篇
神经病学   7篇
特种医学   4篇
外科学   6篇
综合类   31篇
预防医学   7篇
眼科学   1篇
药学   539篇
中国医学   59篇
  2023年   4篇
  2022年   11篇
  2021年   14篇
  2020年   11篇
  2019年   22篇
  2018年   23篇
  2017年   22篇
  2016年   29篇
  2015年   22篇
  2014年   24篇
  2013年   72篇
  2012年   30篇
  2011年   32篇
  2010年   21篇
  2009年   18篇
  2008年   19篇
  2007年   13篇
  2006年   13篇
  2005年   15篇
  2004年   19篇
  2003年   18篇
  2002年   21篇
  2001年   13篇
  2000年   18篇
  1999年   16篇
  1998年   12篇
  1997年   25篇
  1996年   11篇
  1995年   17篇
  1994年   6篇
  1993年   5篇
  1992年   11篇
  1991年   7篇
  1990年   8篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   11篇
  1984年   9篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   7篇
  1978年   9篇
  1977年   16篇
  1976年   10篇
  1975年   3篇
  1974年   2篇
  1971年   2篇
排序方式: 共有732条查询结果,搜索用时 21 毫秒
51.
Toxic effects of several nitro-aryl drugs are attributed to the nitro-reduction that may be suffered in vivo, a reaction that may be catalysed by different reductases. One of these enzymes is NADPH-cytochrome P450 reductase, which belongs to the cytochrome P450 oxidative system mainly localized in the endoplasmic reticulum of the hepatic cell. This system is responsible for the biotransformation of oxidative lipophilic compounds, so that oxidative and reductive metabolic pathways of lipophilic nitro-aryl drugs can take place simultaneously. Because of the affinity of nitro-aryl drugs (xenobiotics) for the endoplasmic reticulum, we propose this subcellular organelle as a good biological system for investigating the toxicity induced by the biotransformation of these or another compounds.In this work we used rat liver microsomes to assess the oxidative stress induced by nitro-aryl drug biotransformation. Incubation of microsomes of rat liver with nifurtimox and nitrofurantoin in the presence of NADPH induced lipoperoxidation, UDP-glucuronyltransferase activation and an increase in the basal microsomal oxygen consumption. Nitro-aryl-1,4-dihydropyridines did not elicit these prooxidant effects; furthermore, they inhibited lipoperoxidation and oxygen consumption induced by Fe3+/ascorbate. Nifurtimox and nitrofurantoin modified the maximum absorption of cytochrome P450 oxidase and inhibited p-nitroanisole O-demethylation, an oxidative reaction catalysed by the cytochrome P450 system, signifying that oxidation may proceed in a similar way to that described for nitro-aryl-1,4-dihydropyridines. Thus the balance between lipophilic nitro-aryl drug oxidation and reduction may be involved in the potential oxidative stress induced by biotransformation.  相似文献   
52.
Objective: The purpose of the present study was to elucidate the cytochrome P450 (P450) isoform(s) involved in the metabolism of loperamide (LOP) to N-demethylated LOP (DLOP) in human liver microsomes. Methods: Three established approaches were used to identify the P450 isoforms responsible for LOP N-demethylation using human liver microsomes and cDNA-expressed P450 isoforms: (1) correlation of LOP N-demethylation activity with marker P450 activities in a panel of human liver microsomes, (2) inhibition of enzyme activity by P450-selective inhibitors, and (3) measurement of DLOP formation by cDNA-expressed P450 isoforms. The relative contribution of P450 isoforms involved in LOP N-demethylation in human liver microsomes were estimated by applying relative activity factor (RAF) values. Results: The formation rate of DLOP showed biphasic kinetics, suggesting the involvement of multiple P450 isoforms. Apparent Km and Vmax values were 21.1 M and 122.3 pmol/min per milligram of protein for the high-affinity component and 83.9 M and 412.0 pmol/min per milligram of protein for the low-affinity component, respectively. Of the cDNA-expressed P450 s tested, CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyzed LOP N-demethylation. LOP N-demethylation was significantly inhibited when coincubated with quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4 inhibitor) by 40 and 90%, respectively, but other chemical inhibitors tested showed weak or no significant inhibition. DLOP formation was highly correlated with CYP3A4-catalyzed midazolam 1-hydroxylation (rs=0.829; P<0.01), CYP2B6-catalzyed 7-ethoxy-4-trifluoromethylcoumarin O-deethylation (rs=0.691; P<0.05), and CYP2C8-catalyzed paclitaxel 6-hydroxylation (rs=0.797; P<0.05). Conclusion: CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyze LOP N-demethylation in human liver microsomes, and among them, CYP2C8 and CYP3A4 may play a crucial role in LOP metabolism at the therapeutic concentrations of LOP. Coadministration of these P450 inhibitors may cause drug interactions with LOP. However, the clinical significance of potential interaction of LOP metabolism by CYP2C8 and CYP3A4 inhibitors should be studied further.  相似文献   
53.
Paclitaxel is an important, recently introduced anti-neoplastic drug. Paclitaxel metabolites are virtually inactive in comparison with the parent drug. The study investigated whether phenolic antioxidants could inhibit metabolic inactivation sufficiently to increase paclitaxel effects. Cytochrome P450 (CYP)-catalysed metabolism of paclitaxel was investigated in rat and human liver microsomes. In rat microsomes, paclitaxel was metabolised mainly to C3'-hydroxypaclitaxel (C3'-OHP), less to C2-hydroxypaclitaxel (C2-OHP), di-hydroxypaclitaxel (di-OHP) and another monohydroxylated paclitaxel. In human liver microsomes, 6-hydroxypaclitaxel (6-OHP), formed by CYP2C8, was the main metabolite, while C3'-OHP, C2-OHP and another product different from di-OHP were minor metabolites, formed by CYP3A4. In individual human livers 6-OHP was formed at 1.8-fold to 13-fold higher rates than C3'-OHP. Kinetic parameters (Km and Vmax) of production of various metabolites in rat and human liver microsomes revealed differences between species as well as human individual differences. Nine phenolic antioxidants ((+)-catechin, (-)-epicatechin, fisetin, gallic acid, morin, myricetin, naringenin, quercetin and resveratrol) were tested for inhibition of paclitaxel metabolism. In rat microsomes, resveratrol was more inhibitory than fisetin; the other phenolic antioxidants were without effect. In human microsomes, the inhibiting potency decreased in the order fisetin >quercetin >morin >resveratrol, while the other phenolic antioxidants were not inhibitory; the formation of 6-OHP (CYP2C8) was generally more inhibited than that of C3'-OHP. The inhibition was mostly mixed-type. The results suggest that oral administration of some phenolic substances might increase paclitaxel blood concentrations during chemotherapy.  相似文献   
54.
目的:研究反式曲马朵[(±)一trans-T]代谢及反式氧去甲基曲马朵(M1)生成的立体选择性,方法:(±)-trans-T及其对映体分别与大鼠肝微粒体孵育,高效毛细管电泳法测定孵育液中(±)-trans-T及M1对映体的浓度。结果:以(±)-trans-T单一对映体为底物孵育时,(+)-trans-T的代谢速率较低,(+)-M1生成有较低的V_(max)和CL_(int).以(±)-trans-T消旋体为底物孵育时,(±)-trans-T对映体的代谢速率及(±)-M1对映体的生成速率不同程度地减慢。右美沙芬、普罗帕酮和氟西汀既能抑制(±)-trans-T的代谢,又能抑制M1的生成;普罗帕酮和氟西汀能增强(±)-trans-T代谢及M1生成的立体选择性,右美沙芬仅使M1生成的立体选择性增强。结论:在大鼠肝微粒体中,(±)-trans-T代谢及M1生成有立体选择;(±)-trans-T对映体间存在相互作用。右美沙芬、普罗帕酮及氟西汀对它们的立体选择性产生不同的影响。  相似文献   
55.
AIMS: To investigate the effects of various anticancer drugs on the major metabolic pathways (glucuronidation and 6-methylhydroxylation) of DMXAA in human liver microsomes. METHODS: The effects of various anticancer drugs at 100 and 500 microM on the formation of DMXAA acyl glucuronide (DMXAA-G) and 6-hydroxymethyl-5-methylxanthenone-4-acetic acid (6-OH-MXAA) in human liver microsomes were determined by high performance liquid chromatography (h.p.l.c.). For those anticancer drugs showing significant inhibition of DMXAA metabolism, the inhibition constants (Ki) were determined. The resulting in vitro data were extrapolated to predict in vivo changes in DMXAA pharmacokinetics. RESULTS: Vinblastine, vincristine and amsacrine at 500 microM significantly (P < 0.05) inhibited DMXAA glucuronidation (Ki = 319, 350 and 230 microM, respectively), but not 6-methylhydroxylation in human liver microsomes. Daunorubicin and N-[2-(dimethylamino)-ethyl]acridine-4-carboxamide (DACA) at 100 and 500 microM showed significant (P < 0.05) inhibition of DMXAA 6-methylhydroxylation (Ki = 131 and 0.59 microM, respectively), but not glucuronidation. Other drugs such as 5-fluoroucacil, paclitaxel, tirapazamine and methotrexate exhibited little or negligible inhibition of the metabolism of DMXAA. Pre-incubation of microsomes with the anticancer drugs (100 and 500 microM) did not enhance their inhibitory effects on DMXAA metabolism. Prediction of DMXAA-drug interactions in vivo based on these in vitro data indicated that all the anticancer drugs investigated except DACA appear unlikely to alter the pharmacokinetics of DMXAA, whereas DACA may increase the plasma AUC of DMXAA by 6%. CONCLUSIONS: These results indicate that alteration of the pharmacokinetics of DMXAA appears unlikely when used in combination with other common anticancer drugs. However, this does not rule out the possibility of pharmacokinetic interactions with other drugs used concurrently with this combination of anticancer drugs.  相似文献   
56.
人胎肾上腺线粒体细胞色素P-450体外脱甲基功能(英文)   总被引:2,自引:1,他引:1  
目的:了解胎肾上腺线粒体代谢外源性化合物的能力和特征,方法:制备亚细胞组分,酶学检测脱甲基反应代谢产物—甲醛的含量,结果:在光谱分析和SDS-PAGE证实线粒体存在P-450的基础上,进一步证明线粒体P-450具有脱甲基功能,其脱甲基作用呈蛋白浓度(1-4 mg)和反应时间(10-30 min)依赖性增加,与底物浓度间有良好的量效关系,并与胎龄呈正比,线粒体中红霉素、苄非他明和氨基比林的脱甲基反应分别为微粒体中的89%,162%和62%。醋竹桃霉素增强肾上腺的红霉素脱甲基反应。结论:胎肾上腺线粒体有较强的脱甲基功能,提示胎儿肾上腺线粒体兼有药物代谢功能。  相似文献   
57.
人肝细胞色素P450含量及其同工酶1A1,2A6活性的测定   总被引:5,自引:0,他引:5  
从成人肝细胞中提取微粒体测定其蛋白浓度、细胞色素P450(CPY450)的总量,并建立了通过测定代产物异恶唑和香豆素生成量确定CYP450同工酶CYP1A1、CYP2A6活性的测定方法。结果表明:该测定方法简单、稳定、重复性好,人肝微粒体于-80℃保存6个月人活性无明显影响。  相似文献   
58.
AIMS: To assess the utility of human hepatic microsomes for predicting in vivo intrinsic clearance (CLint ) via the use of four cytochrome P450 2C9 substrates: phenytoin, tolbutamide (S)-ibuprofen (two pathways) and diclofenac, and to examine the role of exogenous albumin within the microsomal incubation. METHODS: V max, Km and CLint (defined as V max/Km ratio) were estimated under initial rate conditions for five pathways of metabolism in a bank of 15 human hepatic microsomal samples and were scaled to in vivo units using the microsomal protein index. Non-metabolic related binding in microsomes was measured for phenytoin and tolbutamide in the presence and absence of albumin. RESULTS: Microsomal CLint values differed by over two orders of magnitude, with the means ranging from 0.18 (phenytoin) to 40.70 (diclofenac) microl min-1 mg-1 microsomal protein. When these data were scaled and compared with published in vivo studies a similar rank order was obtained, however, the actual CLint tended to be underpredicted. While the in vivo unbound Km for phenytoin, 1-5 micron is substantially lower than the value determined in microsomes based on total concentrations (56 micron), correction for the in vitro binding reduces this value to 20 micron and 6 micron in the absence and presence of albumin, respectively. Similar trends were seen with tolbutamide Km. CONCLUSIONS: An appreciation of the utility of in vitro prediction can be best achieved when the range of CLint values predicted from the individual hepatic microsomal samples are compared with the range of individual in vivo CLint values reported in the literature. The degree of underprediction is less evident using the range than the mean data and no consistent advantage in adding albumin to the incubation media is apparent.  相似文献   
59.
AIMS: To compare the oxidative metabolism of (S)-mephenytoin and proguanil in vitro and to determine the involvement of various cytochrome P450 isoforms. METHODS: The kinetics of the formation of 4'-hydroxymephenytoin and cycloguanil in human liver microsomes from 10 liver samples were determined, and inhibition of formation was studied using specific chemical inhibitors and monoclonal antibodies directed towards specific CYP450 isoforms. Expressed CYP450 enzymes were used to characterize further CYP isoform contribution in vitro. Livers were genotyped for CYP2C19 using PCR amplification of genomic DNA followed by restriction endonuclease digestion. RESULTS: All livers were wildtype with respect to CYP2C19, except HLS#5 whose genotype was CYP2C19*1/CYP2C19*2. The Km, Vmax and CLint values for the formation of 4'-hydroxymephenytoin from (S)-mephenytoin and the formation of cycloguanil from proguanil ranged from 50.8 to 51.6 and 43-380 microm, 1.0-13.9 and 0.5-2.5 nmol mg-1 h-1, and 20.2-273.8 and 2.7-38.9 microl h-1 mg-1, respectively. There was a significant association between the Vmax values of cycloguanil and 4'-hydroxymephenytoin formation (rs=0.95, P=0.0004). Cycloguanil formation was inhibited significantly by omeprazole (CYP2C19/3A), troleandomycin (CYP3A), diethyldithiocarbamate (CYP2E1/3A), furafylline (CYP1A2), and (S)-mephenytoin. 4'-Hydroxymephenytoin formation was inhibited significantly by omeprazole, diethyldithiocarbamate, proguanil, furafylline, diazepam, troleandomycin, and sulphaphenazole (CYP2C9). Human CYP2E1 and CYP3A4 monoclonal antibodies did not inhibit the formation of cycloguanil or 4'-hydroxymephenytoin, and cycloguanil was formed by expressed CYP3A4 and CYP2C19 supersomes. However, only expressed CYP2C19 and CYP2C19 supersomes formed 4'-hydroxymephenytoin. CONCLUSIONS: The oxidative metabolism of (S)-mephenytoin and proguanil in vitro is catalysed by CYPs 2C19 and 1A2, with the significant association between Vmax values suggesting that the predominant enzymes involved in both reactions are similar. However the degree of selectively of both drugs for CYP isoforms needs further investigation, particularly the involvement of CYP3A4 in the metabolism of proguanil. We assert that proguanil may not be a suitable alternative to (S)-mephenytoin as a probe drug for the CYP2C19 genetic polymorphism.  相似文献   
60.
1. The NADPH-cytochrome P450 reductases (EC 1.6.2.4) from human and rabbit liver have been purified to electrophoretic homogeneity. The human reductase had an apparent monomeric molecular weight of 77,500 and the rabbit enzyme of 76,500. 2. Both flavoproteins exhibited typical flavoprotein spectra and contained equimolar quantities of FAD and FMN. The two reductases were catalytically active in reducing cytochrome c, ferricyanide and dichlorophenolindophenol, and in supporting rabbit liver cytochrome P450 Form 4 metabolism of 2-acetylaminofluorene. 3. An antibody raised in the goat against the human enzyme formed a precipitin line with the human reductase in a double-diffusion assay, but did not react with the rabbit reductase. Similarly, an antibody raised in the goat against the rabbit reductase formed a precipitin line with the rabbit enzyme, but did not cross-react with the human reductase. 4. Both antibodies inhibited cytochrome c reduction by the two reductases suggesting some immunochemical recognition. 5. Immunochemical cross-reactivity was confirmed when both reductases were subjected to the more sensitive immunoblot technique using either anti-human or anti-rabbit reductase IgG. 6. The human and rabbit reductases are essentially similar in amino acid composition, except that the former has larger amounts of serine and glycine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号