首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1503篇
  免费   152篇
  国内免费   74篇
儿科学   4篇
妇产科学   1篇
基础医学   203篇
口腔科学   8篇
临床医学   59篇
内科学   57篇
神经病学   1013篇
特种医学   14篇
外科学   9篇
综合类   186篇
现状与发展   1篇
预防医学   10篇
眼科学   19篇
药学   95篇
中国医学   23篇
肿瘤学   27篇
  2024年   2篇
  2023年   21篇
  2022年   18篇
  2021年   38篇
  2020年   55篇
  2019年   47篇
  2018年   45篇
  2017年   42篇
  2016年   63篇
  2015年   55篇
  2014年   69篇
  2013年   76篇
  2012年   73篇
  2011年   87篇
  2010年   92篇
  2009年   74篇
  2008年   77篇
  2007年   84篇
  2006年   80篇
  2005年   82篇
  2004年   59篇
  2003年   67篇
  2002年   64篇
  2001年   37篇
  2000年   18篇
  1999年   35篇
  1998年   43篇
  1997年   38篇
  1996年   39篇
  1995年   24篇
  1994年   15篇
  1993年   10篇
  1992年   12篇
  1991年   11篇
  1990年   10篇
  1989年   13篇
  1988年   5篇
  1987年   4篇
  1986年   14篇
  1985年   13篇
  1984年   5篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1976年   1篇
  1972年   1篇
排序方式: 共有1729条查询结果,搜索用时 15 毫秒
81.
The prevalence of HIV-associated neurocognitive impairment (NCI), which includes HIV-associated dementia (HAD) and minor cognitive and motor disorder (MCMD), has been increasing. HIV-infected and/or activated macrophages/microglia in the brain initiate the neurodegeneration seen in HIV-associated NCI via soluble neurotoxic mediators, including reactive oxygen species, viral proteins and excitotoxins. Neurotoxic factors released by macrophages/microglia injure neurones directly and alter astrocytic homeostatic functions, which can lead to excitotoxicity and oxidative stress-mediated neuronal injury. Often, cells respond to oxidative stress by initiating the endoplasmic reticulum (ER) stress response. Thus, we hypothesize that ER stress response is activated in HIV-infected cortex. We used immunofluorescence and immunoblotting to assess expression patterns of the ER stress proteins, BiP and ATF6, in HIV-positive cortical autopsy tissue. Additionally, we performed immunofluorescence using cell type-specific markers to examine BiP staining in different cell types, including neurones, astrocytes and macrophages/microglia. We observed a significant increase in BiP expression by both immunoblotting and immunofluorescence in HIV-positive cortex compared with control tissue. Additionally, phenotypic analysis of immunofluorescence showed cell type-specific increases in BiP levels in neurones and astrocytes. Further, ATF-6beta, an ER stress response initiator, is up-regulated in the same patient group, as assessed by immunoblotting. These results suggest that ER stress response is activated in HIV-infected cortex. Moreover, data presented here indicate for the first time that numbers of macrophages/microglia increase in brains of MCMD patients, as has been observed in HAD.  相似文献   
82.
Nagasawa K  Kawasaki F  Tanaka A  Nagai K  Fujimoto S 《Glia》2007,55(14):1397-1404
In this study, we examined the transport mechanisms for guanine and guanosine in rat neurons and astrocytes, and compared their characteristics. In the both types of cell, the uptake of [(3)H]guanine and [(3)H]guanosine was time-, temperature-, and concentration-dependent, and Na(+)-independent. Their uptake decreased on the addition of purine and pyrimidine nucleobases or nucleosides, and the inhibitory effect of the purine analogues was greater than that of the pyrimidine ones. In both cell types, equilibrative nucleoside transporter (ENT) 1 and ENT2 expression was confirmed at the mRNA level, and nitrobenzylmercaptopurine riboside, a representative inhibitor for ENT, decreased their uptake at concentrations of over 10 microM. Comparing uptake characteristics between the substrates, [(3)H]guanine uptake exhibited higher affinity and clearance than [(3)H]guanosine uptake in each type of cell. Although between neurons and astrocytes, there was no difference in the apparent uptake clearance for [(3)H]guanine and [(3)H]guanosine, which was calculated based upon the cellular protein content, the cellular uptake clearance was significantly greater in astrocytes than in neurons. These findings indicate that guanine and guanosine, of which the former is a preferable substrate, are taken up into both neurons and astrocytes via ENT2, and that the extracellular concentrations of guanine and guanosine are mainly regulated by astrocytes to maintain brain physiology.  相似文献   
83.
84.
High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling-activated efflux of (3)H-glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5-5 U/mL) elicited small (3)H-glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5- to 10-fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease-activated receptor-1. Thr potentiation of (3)H-glutamate efflux was largely dependent on a Thr-elicited increases in cytosolic Ca(2+) (Ca(2+) (i)) concentration ([Ca(2+)](i)). Preventing Ca(2+) (i) rise by treatment with EGTA-AM or with the phospholipase C blocker U73122 reduced the Thr-increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%-22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca(2+)-sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide-3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA-AM plus wortmannin essentially abolished Thr-dependent glutamate efflux. Thr-activated glutamate release was potently inhibited by the blockers of the volume-sensitive anion permeability pathway, NPPB (IC(50) 15.8 microM), DCPIB (IC(50) 4.2 microM), and tamoxifen (IC(50) 6.6 microM. These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma.  相似文献   
85.
In myelinated fibers, various interactions among axons, oligodendrocytes, and astrocytes are present, particularly around the node of Ranvier. In the present study, we examined the protein composition of cerebroside sulfotransferase knockout (CST KO) mouse spinal cord by two-dimensional gel electrophoresis to examine the molecular changes resulting from the disruption of paranodal junctions in addition to the sulfatide-deficient condition. Interestingly, heat shock protein 27 (Hsp27) and 1-cys peroxiredoxin (1-Cys Prx) were both elevated in CST KO mice. Hsp27 was increased specifically in reactive astrocytes in the white matter, and the elevation was well correlated to the progression of neurologic symptoms. In contrast, 1-Cys Prx was elevated both in white and gray matter astrocytes in CST KO mice. These results suggest that astrocytes do not always respond stereotypically, as they display differences in their activation in these two regions. To determine whether these changes are specific to the sulfatide-deficient condition, spinal cords from CST KO mice and the hypomyelinating mutant shiverer mice were compared. The same distribution patterns of Hsp27 and 1-Cys Prx were found in reactive astrocytes in both CST KO and shiverer mice, suggesting that paranodal disruption with progressive nodal changes may underlie the similar reaction of white matter astrocytes. In contrast, CST KO and shiverer mice showed distinctly different localization patterns of connexin 43 and connexin 47, suggesting that intercellular communication between astrocytes and oligodendrocytes was different in these mutants. These results suggest that astrocytes may respond differentially to individual white matter abnormalities and may modulate specific axonal functions.  相似文献   
86.
BACKGROUND: Studies have demonstrated that astrocytes may possess similar properties to neural stem cells/neural precursor cells and have the potential to differentiate into neurons. OBJECTIVE: To observe neuroepithelial stem cell protein (nestin) and glial fibrillary acidic protein (GFAP) expression following spinal cord injury, and to explore whether nestin+/GFAP+ cells, which are detected at peak levels in gray and white matter around the ependymal region of the central canal in injured spinal cord, possess similar properties of neural stem cells. DESIGN, TIME AND SETTING: A randomized, controlled experiment. The study was performed at the Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education between January 2004 and December 2006. MATERIALS: Rabbit anti-rat nestin, β-tubulinⅢ, mouse anti-rat GFAP, galactocerebroside (GaLC) antibodies were utilized, as well as flow cytometry. METHODS: A total of 60 male, Sprague Dawley rats, aged 8 weeks, were randomly assigned to control (n = 12) and model (n = 48) groups. The spinal cord injury model was established in the model group by aneurysm clip compression, while the control animals were not treated. The gray and white matter around the ependymal region of the central canal exhibited peak expression of nestin+/GFAP+ cells. These cells were harvested and prepared into single cell suspension, followed by primary and passage cultures. The cells were incubated with serum-containing neural stem cell complete medium. MAINOUTCOME MEASURES: Nestin and GFAP expression in injured spinal cord was determined using immunohistochemistry and double-labeled immunofluorescence at 1, 3, 5, 7, 14, 28, and 56 days post-injury. In addition, cell proliferation and differentiation were detected using immunofluorescence cytochemistry and flow cytometry. RESULTS: Compared with the control group, the model group exhibited significantly increased nestin and GFAP expression (P 〈 0.05), which reached peak levels between 3 and 7 days. The majority of cells in the ependymal region around the central canal were nestin+/GFAP- cells, while the gray and white matter around the ependymal region were full of nestin+/GFAP+ cells, with an astrocytic-like appearance. A large number of nestin+/GFAP+cells were observed in the model group cell culture, and the cells formed clonal spheres and displayed strong nestin-positive immunofluorescence staining. Following induced differentiation, a large number of GaLC-nestin, β-tubulin Ⅲ-nestin, and GFAP-nestin positive cells were observed. However, no obvious changes were seen in the control group. Cells in S stage, as well as the percentage of proliferating cells, in the model group were significantly greater than in the control group (P 〈 0.01), CONCLUSION: Spinal cord injury in the adult rat induced high expression of nestin+/GFAP+ in the gray and white matter around the ependymal region of the central canal. These nestin+/GFAP+ cells displayed the potential to self-renew and differentiate into various cells. The cells could be neural stem cells of the central nervous system.  相似文献   
87.
J1‐31 is one of the astrocytic proteins, the expression of which has not been evaluated in astrocytomas. In the present study, we studied the expression of J1‐31 protein in astrocytes and astrocytomas in comparison with GFAP, p53 and Ki‐67. Materials consisted of formalin‐fixed paraffin‐embedded tissue specimens that included five cases of normal brain, 17 of gliosis, 15 of pilocytic astrocytoma (WHO grade I), 26 of low‐grade diffuse astrocytoma (WHO grade II), four of anaplastic astrocytoma (WHO grade III), and eight of glioblastoma (WHO grade IV). GFAP was highly expressed in all specimens examined. The anti‐J1‐31 antibody exhibited strong cytoplasmic staining of reactive gliosis in 17/17 (100%) cases with a higher intensity of staining than that observed in the adjacent normal astrocytes. The antibody showed reactivity with tumor cells in 12/15 (80%) cases of pilocytic astrocytoma, although intensity of staining was generally weaker and more focal than observed in reactive gliosis. J1‐31‐positive tumor cells were detected in only 9/26 (35%) cases of the low‐grade diffuse astrocytoma and none of the cases of anaplastic astrocytoma and glioblastoma. Increasing Ki‐67 indices paralleled advancing tumor grades. p53 protein was expressed more commonly in infiltrating astrocytomas compared to pilocytic astrocytoma. In conclusion, down‐regulation of J1‐31 expression correlates with advancing grade of astrocytomas. The result suggests this protein plays some role in astrocytes that is progressively lost in malignant progression. The anti‐J1‐31 antibody may help further our understanding of astrocytes in disease and may be useful as an aid in the pathologic diagnosis of astrocytic lesions.  相似文献   
88.
Alzheimer's disease (AD) is the most common progressive dementia and is pathologically characterized by brain deposition of amyloid‐β (Aβ) peptide as senile plaques. Inflammatory and immune response pathways are chronically activated in AD patient brains at low levels, and likely play a role in disease progression. Like microglia, activated astrocytes produce numerous acute‐phase reactants and proinflammatory molecules in the AD brain. One such molecule, S100B, is highly expressed by reactive astrocytes in close vicinity of β‐amyloid deposits. We have previously shown that augmented and prolonged activation of astrocytes has a detrimental impact on neuronal survival. Furthermore, we have implicated astrocyte‐derived S100B as a candidate molecule responsible for this deleterious effect. To evaluate a putative relationship between S100B and AD pathogenesis, we crossed transgenic mice overexpressing human S100B (TghuS100B mice) with the Tg2576 mouse model of AD, and examined AD‐like pathology. Brain parenchymal and cerebral vascular β‐amyloid deposits and Aβ levels were increased in bigenic Tg2576‐huS100B mice. These effects were associated with increased cleavage of the β‐C‐terminal fragment of amyloid precursor protein (APP), elevation of the N‐terminal APP cleavage product (soluble APPβ), and activation of β‐site APP cleaving enzyme 1. In addition, double transgenic mice showed augmented reactive astrocytosis and microgliosis, high levels of S100 expression, and increased levels of proinflammatory cytokines as early as 7–9 months of age. These results provide evidence that (over)‐expression of S100B acts to accelerate AD‐like pathology, and suggest that inhibiting astrocytic activation by blocking S100B biosynthesis may be a promising therapeutic strategy to delay AD progression. © 2009 Wiley‐Liss, Inc.  相似文献   
89.
According to previously published ultrastructural studies, oligodendrocytes in white matter exhibit gap junctions with astrocytes, but not among each other, while in vitro oligodendrocytes form functional gap junctions. We have studied functional coupling among oligodendrocytes in acute slices of postnatal mouse corpus callosum. By whole‐cell patch clamp we dialyzed oligodendrocytes with biocytin, a gap junction‐permeable tracer. On average 61 cells were positive for biocytin detected by labeling with streptavidin‐Cy3. About 77% of the coupled cells stained positively for the oligodendrocyte marker protein CNPase, 9% for the astrocyte marker GFAP and 14% were negative for both CNPase and GFAP. In the latter population, the majority expressed Olig2 and some NG2, markers for oligodendrocyte precursors. Oligodendrocytes are known to express Cx47, Cx32 and Cx29, astrocytes Cx43 and Cx30. In Cx47‐deficient mice, the number of coupled cells was reduced by 80%. Deletion of Cx32 or Cx29 alone did not significantly reduce the number of coupled cells, but coupling was absent in Cx32/Cx47‐double‐deficient mice. Cx47‐ablation completely abolished coupling of oligodendrocytes to astrocytes. In Cx43‐deficient animals, oligodendrocyte‐astrocyte coupling was still present, but coupling to oligodendrocyte precursors was not observed. In Cx43/Cx30‐double deficient mice, oligodendrocyte‐to‐astrocyte coupling was almost absent. Uncoupled oligodendrocytes showed a higher input resistance. We conclude that oligodendrocytes in white matter form a functional syncytium predominantly among each other dependent on Cx47 and Cx32 expression, while astrocytic connexins expression can promote the size of this network. © 2010 Wiley‐Liss, Inc.  相似文献   
90.
Liver kinase B1 (LKB1) is a ubiquitously expressed kinase involved in the regulation of cell metabolism, growth, and inflammatory activation. We previously reported that a single nucleotide polymorphism in the gene encoding LKB1 is a risk factor for multiple sclerosis (MS). Since astrocyte activation and metabolic function have important roles in regulating neuroinflammation and neuropathology, we examined the serine/threonine kinase LKB1 in astrocytes in a chronic experimental autoimmune encephalomyelitis mouse model of MS. To reduce LKB1, a heterozygous astrocyte-selective conditional knockout (het-cKO) model was used. While disease incidence was similar, disease severity was worsened in het-cKO mice. RNAseq analysis identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in het-cKO mice relating to mitochondrial function, confirmed by alterations in mitochondrial complex proteins and reductions in mRNAs related to astrocyte metabolism. Enriched pathways included major histocompatibility class II genes, confirmed by increases in MHCII protein in spinal cord and cerebellum of het-cKO mice. We observed increased numbers of CD4+ Th17 cells and increased neuronal damage in spinal cords of het-cKO mice, associated with reduced expression of choline acetyltransferase, accumulation of immunoglobulin-γ, and reduced expression of factors involved in motor neuron survival. In vitro, LKB1-deficient astrocytes showed reduced metabolic function and increased inflammatory activation. These data suggest that metabolic dysfunction in astrocytes, in this case due to LKB1 deficiency, can exacerbate demyelinating disease by loss of metabolic support and increase in the inflammatory environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号