首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3199篇
  免费   260篇
  国内免费   140篇
耳鼻咽喉   13篇
儿科学   13篇
妇产科学   17篇
基础医学   438篇
口腔科学   20篇
临床医学   222篇
内科学   292篇
皮肤病学   17篇
神经病学   146篇
特种医学   75篇
外国民族医学   1篇
外科学   114篇
综合类   323篇
预防医学   47篇
眼科学   11篇
药学   1327篇
中国医学   129篇
肿瘤学   394篇
  2024年   12篇
  2023年   45篇
  2022年   102篇
  2021年   113篇
  2020年   72篇
  2019年   89篇
  2018年   127篇
  2017年   114篇
  2016年   128篇
  2015年   157篇
  2014年   181篇
  2013年   536篇
  2012年   167篇
  2011年   166篇
  2010年   123篇
  2009年   134篇
  2008年   172篇
  2007年   148篇
  2006年   133篇
  2005年   107篇
  2004年   100篇
  2003年   92篇
  2002年   96篇
  2001年   64篇
  2000年   45篇
  1999年   65篇
  1998年   46篇
  1997年   29篇
  1996年   41篇
  1995年   39篇
  1994年   29篇
  1993年   28篇
  1992年   12篇
  1991年   24篇
  1990年   14篇
  1989年   8篇
  1988年   5篇
  1987年   9篇
  1986年   2篇
  1985年   8篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   2篇
排序方式: 共有3599条查询结果,搜索用时 0 毫秒
101.
Gestational trophoblastic neoplasia (GTN) can result from the over-proliferation of trophoblasts. Treatment of choriocarcinoma, the most aggressive GTN, currently requires high doses of systemic chemotherapeutic agents, which result in indiscriminate drug distribution and severe toxicity. To overcome these disadvantages and enhance the chemotherapeutic efficacy, chondroitin sulfate A (CSA)-binding nanoparticles were developed for the targeted delivery of doxorubicin (DOX) to choriocarcinoma cells using a synthetic CSA-binding peptide (CSA-BP), derived from malarial protein, which specifically binds to the CSA exclusively expressed in the placental trophoblast. CSA-BP-conjugated nanoparticles rapidly bonded to choriocarcinoma (JEG3) cells and were efficiently internalized into the lysosomes. Moreover, CSA-BP modification significantly increased the anti-cancer activity of the DOX-loaded nanoparticles in vitro. Intravenous injections of CSA-BP-conjugated nanoparticles loaded with indocyanine green (CSA-INPs) were rapidly localized to the tumor. The CSA-targeted nanoparticles loaded with DOX (CSA-DNPs) strongly inhibited primary tumor growth and, more importantly, significantly suppressed metastasis in vivo. Collectively, our results highlight the potential of the CSA-BP-decorated nanoparticles as an alternative targeted delivery system of chemotherapeutic agents for treating choriocarcinoma and for developing new GTN therapies based on drug targeting.  相似文献   
102.
The efficient targeting of drugs to tumor cell and subsequent rapid drug release remain primary challenges in the development of nanomedicines for cancer therapy. Here, we constructed a glucose transporter 1 (GLUT1)-targeting and tumor cell microenvironment-sensitive drug release Glucose–PEG–PAMAM-s-s–Camptothecin-Cy7 (GPCC) conjugate to tackle the dilemma. The conjugate was characterized by a small particle size, spherical shape, and glutathione (GSH)-sensitive drug release. In vitro tumor targeting was explored in monolayer (2D) and multilayer tumor spheroid (3D) HepG2 cancer cell models (GLUT1+). The cellular uptake of GPCC was higher than that in the control groups and that in normal L02 cells (GLUT1?), likely due to the conjugated glucose moiety. Moreover, the GPCC conjugate exhibited stronger cytotoxicity, higher S arrest and enhanced apoptosis and necrosis rate in HepG2 cells than control groups but not L02 cells. However, the cytotoxicity of GPCC was lower than that of free CPT, which could be explained by the slower release of CPT from the GPCC compared with free CPT. Additional in vivo tumor targeting experiments demonstrated the superior tumor-targeting ability of the GPCC conjugate, which significantly accumulated in tumor meanwhile minimize in normal tissues compared with control groups. The GPCC conjugate showed better pharmacokinetic properties, enabling a prolonged circulation time and increased camptothecin area under the curve (AUC). These features contributed to better therapeutic efficacy and lower toxicity in H22 hepatocarcinoma tumor-bearing mice. The GLUT1-targeting, GSH-sensitive GPCC conjugate provides an efficient, safe and economic approach for tumor cell targeted drug delivery.  相似文献   
103.
How to overcome drug resistance and prevent tumor metastasis is key to the success of malignant tumor therapy. In this paper, ADH-1 peptide-modified liposomes (A-LP) have been successfully constructed for restoring chemosensitivity and suppressing cancer cell migration. With a particle size of about 90?nm, this functionalized nanocarrier was loaded with fluorescent probe or paclitaxel (PTX). Cellular uptake studies showed that A-LP facilitated the delivery of anticancer drug to tumor cells undergoing EMT. Interestingly, this nanocarrier enhanced chemosensitivity by assessing the cell activity using CCK-8 assay. Further, the results of Wound scratch assay and Transwell migration assay showed the inhibition effect of this nanocarrier on tumor cell migration. Moreover, this nanocarrier exhibited significant tumor-targeting ability and anti-tumor efficacy in vivo. Collectively, A-LP might be a novel targeted drug delivery system to enhance the efficacy of chemotherapy and prevent tumor metastasis.  相似文献   
104.
Currently, combination drug therapy is one of the most effective approaches to glioma treatment. However, due to the inherent dissimilar pharmacokinetics of individual drugs and blood brain barriers, it was difficult for the concomitant drugs to simultaneously be delivered to glioma in an optimal dose ratio manner. Herein, a cationic micellar core (Cur-M) was first prepared from d-α-tocopherol-grafted-ε-polylysine polymer to encapsulate the hydrophobic curcumin, followed by dopamine-modified-poly-γ-glutamic acid polymer further deposited on its surface as a anion shell through pH-sensitive linkage to encapsulate the hydrophilic doxorubicin (DOX) hydrochloride. By controlling the combinational Cur/DOX molar ratio at 3:1, a pH-sensitive core–shell nanoparticle (PDCP-NP) was constructed to simultaneously target the cancer stem cells (CSCs) and the differentiated tumor cells. PDCP-NP exhibited a dynamic diameter of 160.8?nm and a zeta-potential of –30.5?mV, while its core–shell structure was further confirmed by XPS and TEM. The ratiometric delivery capability of PDCP-NP was confirmed by in vitro and in vivo studies, in comparison with the cocktail Cur/DOX solution. Meanwhile, the percentage of CSCs in tumors was significantly decreased from 4.16% to 0.95% after treatment with PDCP-NP. Overall, PDCP-NP may be a promising carrier for the combination therapy with drug candidates having dissimilar physicochemical properties.  相似文献   
105.
Peripheral Arterial Occlusive Disease (PAOD) is an aging disease that affects the quality of life of many people by its intermittent claudication and critical limb ischemia presentations. Traditional treatment and management of PAOD are asking patients to make a life change and medication with antiplatelet, statins and cilostazol, which decrease the possibility of clot formation. Our strategy has employed a magnetic Fe3O4-PLGA polymersome to carry the cilostazol into the ischemic area by magnetic attraction following remote-control drug release through low-energy ultrasound exposure. In the animal studies, the cilostazol-loaded Fe3O4-PLGA polymersomes were injected and accumulated at ischemic leg through magnetic attraction. Then, using a clinical-use ultrasound machine the leg was irradiated to forward cilostazol release from the accumulated polymersomes. Dramatically, we found an observable result of bloody flux recovery in the leg after 7?days compared to the non-treated leg that showed no evidence of the blood recovery.  相似文献   
106.
The subsidisation of mosquito nets has been widely used to increase ownership in countries where malaria represents a public health problem. However, an important question that has not been addressed empirically is how far net subsidy programmes increase ownership above the level that would have prevailed in the absence of the subsidy (i.e., incremental ownership). This study addresses that gap by investigating the impact of a large‐scale mosquito net voucher subsidy––the Tanzania National Voucher Scheme (TNVS)––on short‐term demand for unsubsidised commercial nets, estimating a household demand model with nationally representative household survey data. The results suggest that, despite the TNVS using a categorical targeting approach that did not discriminate by wealth, it still led to a large increase in incremental ownership of mosquito nets, with limited evidence of displacement of unsubsidised sales. Although no evidence is found of an additional TNVS voucher decreasing the number of unsubsidised sales in the same period, results indicate that an additional TNVS voucher reduced the probability of purchasing any unsubsidised net in the same period by 14%. The findings also highlight the critical role played by social learning or campaign messaging in increasing mosquito net ownership.  相似文献   
107.
Introduction: Breast cancer stands the second prominent cause of death among women. For its efficient treatment, Lapatinib (LAPA) was developed as a selective tyrosine kinase inhibitor of receptors, overexpressed by breast cancer cells. Various explored delivery strategies for LAPA indicated its controlled release with enhanced aqueous solubility, improved bioavailability, decreased plasma protein binding, reduced dose and toxicity to the other organs with maximized clinical efficacy, compared to its marketed tablet formulation.

Areas covered: This comprehensive review deals with the survey, performed through different electronic databases, regarding various challenges and their solutions attained by fabricating delivery systems like nanoparticles, micelle, nanocapsules, nanochannels, and liposomes. It also covers the synthesis of novel LAPA-conjugates for diagnostic purpose.

Expert opinion: Unfortunately, clinical use of LAPA is restricted because of its extensive albumin binding capacity, poor oral bioavailability, and poor aqueous solubility. LAPA is marketed as the oral tablet only. Therefore, it becomes imperative to formulate alternate efficient multiparticulate or nano-delivery systems for administration through non-oral routes, for active/passive targeting, and to scale-up by pharmaceutical scientists followed by their clinical trials by clinical experts. LAPA combinations with capecitabine and letrozole should also be tried for breast cancer treatment.  相似文献   

108.
血脑屏障的存在,导致药物不能有效到达靶部位发挥作用,极大的影响神经系统药物的发展和进步。纳米技术已被证明是用于脑靶向治疗的一种有效工具,尤其在脑肿瘤和神经退行性疾病中应用甚广。功能化纳米粒通过表面修饰等提高药物的顺应性,在药物原来的治疗基础上,达到更加精准的靶向性,高效率在靶部位聚集,起到治疗作用。本文主要综述功能化纳米粒及其功能化策略,总结了影响功能化纳米粒脑靶向运输的因素,同时对功能化的纳米粒在脑部疾病治疗中的优势和应用进行阐述,为其相关研究提供参考。  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号